{"title":"平方和的广义可识别性","authors":"Giorgio Ottaviani , Ettore Teixeira Turatti","doi":"10.1016/j.jalgebra.2024.07.052","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>f</em> be a homogeneous polynomial of even degree <em>d</em>. We study the decompositions <span><math><mi>f</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> where <span><math><mi>deg</mi><mo></mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>d</mi><mo>/</mo><mn>2</mn></math></span>. The minimal number of summands <em>r</em> is called the 2-rank of <em>f</em>, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits, the problem becomes counting how many different <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits of decomposition exist. We say that <em>f</em> is <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiable if there is a unique <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbit. We give sufficient conditions for generic and specific <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability. Moreover, we show the generic <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability of ternary forms.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004496/pdfft?md5=d156824f16e82cf31b6b574e41ec038a&pid=1-s2.0-S0021869324004496-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized identifiability of sums of squares\",\"authors\":\"Giorgio Ottaviani , Ettore Teixeira Turatti\",\"doi\":\"10.1016/j.jalgebra.2024.07.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>f</em> be a homogeneous polynomial of even degree <em>d</em>. We study the decompositions <span><math><mi>f</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> where <span><math><mi>deg</mi><mo></mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>d</mi><mo>/</mo><mn>2</mn></math></span>. The minimal number of summands <em>r</em> is called the 2-rank of <em>f</em>, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits, the problem becomes counting how many different <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits of decomposition exist. We say that <em>f</em> is <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiable if there is a unique <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbit. We give sufficient conditions for generic and specific <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability. Moreover, we show the generic <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability of ternary forms.</p></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004496/pdfft?md5=d156824f16e82cf31b6b574e41ec038a&pid=1-s2.0-S0021869324004496-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324004496\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 f 是偶数阶 d 的同次多项式。我们研究分解 f=∑i=1rfi2 其中 degfi=d/2 的分解。和的最小数目 r 称为 f 的 2-秩,因此 2-秩等于 1 的多项式正是正方形。这种分解从来都不是唯一的,它们被分为 O(r)-orbits ,问题是要计算存在多少个不同的 O(r)-orbits 分解。如果存在唯一的 O(r)-orbit ,我们就说 f 是 O(r)-identifiable 的。我们给出了一般和特殊 O(r)-identifiability 的充分条件。此外,我们还展示了三元形式的一般 O(r)-identifiability 。
Let f be a homogeneous polynomial of even degree d. We study the decompositions where . The minimal number of summands r is called the 2-rank of f, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into -orbits, the problem becomes counting how many different -orbits of decomposition exist. We say that f is -identifiable if there is a unique -orbit. We give sufficient conditions for generic and specific -identifiability. Moreover, we show the generic -identifiability of ternary forms.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.