复合粘合剂促进大鼠伤口愈合的潜力

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Alina Ioana Ardelean, Sorin Marian Marza, Madalina Florina Dragomir, Andrada Negoescu, Codruta Sarosi, Cristiana Stefania Novac, Cosmin Pestean, Marioara Moldovan, Liviu Oana
{"title":"复合粘合剂促进大鼠伤口愈合的潜力","authors":"Alina Ioana Ardelean, Sorin Marian Marza, Madalina Florina Dragomir, Andrada Negoescu, Codruta Sarosi, Cristiana Stefania Novac, Cosmin Pestean, Marioara Moldovan, Liviu Oana","doi":"10.3390/bioengineering11080837","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in biomaterials have resulted in the creation of cement composites with potential wound treatment properties, even though they are currently mainly employed for bone regeneration. Their ability to improve skin restoration after surgery is worth noting. The main purpose of this research is to evaluate the ability of composite cement to promote wound healing in a rat experimental model. Full-thickness 5 mm skin defects were created, and the biomaterials were applied as wound dressings. The hybrid light-cured cement composites possess an organic matrix (Bis-GMA, TEGDMA, UDMA, and HEMA) and an inorganic phase (bioglasses, silica, and hydroxyapatite). The organic phase also contains γ-methacryloxypropyl-trimethoxysilane, which is produced by distributing bioactive silanized inorganic filler particles. The repair of the defect is assessed using a selection of macroscopic and microscopic protocols, including wound closure rate, histopathological analysis, cytotoxicity, and biocompatibility. Both composites exerted a favorable influence on cells, although the C1 product demonstrated a more extensive healing mechanism. Histological examination of the kidney and liver tissues revealed no evidence of toxicity. There were no notable negative outcomes in the treated groups, demonstrating the biocompatibility and efficacy of these bioproducts. By day 15, the skin of both groups had healed completely. This research introduces a pioneering strategy by utilizing composite cements, traditionally used in dentistry, in the context of skin wound healing.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351640/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Potential of Composite Cements for Wound Healing in Rats.\",\"authors\":\"Alina Ioana Ardelean, Sorin Marian Marza, Madalina Florina Dragomir, Andrada Negoescu, Codruta Sarosi, Cristiana Stefania Novac, Cosmin Pestean, Marioara Moldovan, Liviu Oana\",\"doi\":\"10.3390/bioengineering11080837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent developments in biomaterials have resulted in the creation of cement composites with potential wound treatment properties, even though they are currently mainly employed for bone regeneration. Their ability to improve skin restoration after surgery is worth noting. The main purpose of this research is to evaluate the ability of composite cement to promote wound healing in a rat experimental model. Full-thickness 5 mm skin defects were created, and the biomaterials were applied as wound dressings. The hybrid light-cured cement composites possess an organic matrix (Bis-GMA, TEGDMA, UDMA, and HEMA) and an inorganic phase (bioglasses, silica, and hydroxyapatite). The organic phase also contains γ-methacryloxypropyl-trimethoxysilane, which is produced by distributing bioactive silanized inorganic filler particles. The repair of the defect is assessed using a selection of macroscopic and microscopic protocols, including wound closure rate, histopathological analysis, cytotoxicity, and biocompatibility. Both composites exerted a favorable influence on cells, although the C1 product demonstrated a more extensive healing mechanism. Histological examination of the kidney and liver tissues revealed no evidence of toxicity. There were no notable negative outcomes in the treated groups, demonstrating the biocompatibility and efficacy of these bioproducts. By day 15, the skin of both groups had healed completely. This research introduces a pioneering strategy by utilizing composite cements, traditionally used in dentistry, in the context of skin wound healing.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351640/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080837\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080837","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管水泥复合材料目前主要用于骨再生,但生物材料的最新发展已使水泥复合材料具备了潜在的伤口治疗特性。值得注意的是,它们还能改善手术后的皮肤修复。本研究的主要目的是评估复合骨水泥在大鼠实验模型中促进伤口愈合的能力。大鼠皮肤全厚为 5 毫米,皮肤缺损后使用生物材料作为伤口敷料。混合光固化水泥复合材料具有有机基质(双-GMA、TEGDMA、UDMA 和 HEMA)和无机相(生物玻璃、二氧化硅和羟基磷灰石)。有机相中还含有γ-甲基丙烯酰氧基丙基-三甲氧基硅烷,它是通过分布生物活性硅烷化无机填料颗粒而产生的。采用一系列宏观和微观方案对缺损修复进行评估,包括伤口闭合率、组织病理学分析、细胞毒性和生物相容性。两种复合材料都对细胞产生了有利影响,但 C1 产品的愈合机制更为广泛。对肾脏和肝脏组织的组织学检查没有发现任何毒性迹象。治疗组没有出现明显的不良反应,这证明了这些生物制品的生物相容性和功效。到第 15 天,两组的皮肤都已完全愈合。这项研究开创性地将传统上用于牙科的复合树脂应用于皮肤伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Potential of Composite Cements for Wound Healing in Rats.

Recent developments in biomaterials have resulted in the creation of cement composites with potential wound treatment properties, even though they are currently mainly employed for bone regeneration. Their ability to improve skin restoration after surgery is worth noting. The main purpose of this research is to evaluate the ability of composite cement to promote wound healing in a rat experimental model. Full-thickness 5 mm skin defects were created, and the biomaterials were applied as wound dressings. The hybrid light-cured cement composites possess an organic matrix (Bis-GMA, TEGDMA, UDMA, and HEMA) and an inorganic phase (bioglasses, silica, and hydroxyapatite). The organic phase also contains γ-methacryloxypropyl-trimethoxysilane, which is produced by distributing bioactive silanized inorganic filler particles. The repair of the defect is assessed using a selection of macroscopic and microscopic protocols, including wound closure rate, histopathological analysis, cytotoxicity, and biocompatibility. Both composites exerted a favorable influence on cells, although the C1 product demonstrated a more extensive healing mechanism. Histological examination of the kidney and liver tissues revealed no evidence of toxicity. There were no notable negative outcomes in the treated groups, demonstrating the biocompatibility and efficacy of these bioproducts. By day 15, the skin of both groups had healed completely. This research introduces a pioneering strategy by utilizing composite cements, traditionally used in dentistry, in the context of skin wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信