利用切圆半径估算法计算近红外前臂血管宽度

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Qianru Ji, Haoting Liu, Zhen Tian, Song Wang, Qing Li, Dewei Yi
{"title":"利用切圆半径估算法计算近红外前臂血管宽度","authors":"Qianru Ji, Haoting Liu, Zhen Tian, Song Wang, Qing Li, Dewei Yi","doi":"10.3390/bioengineering11080801","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the analysis of the functional status of forearm blood vessels, this paper fully considers the orientation of the vascular skeleton and the geometric characteristics of blood vessels and proposes a blood vessel width calculation algorithm based on the radius estimation of the tangent circle (RETC) in forearm near-infrared images. First, the initial infrared image obtained by the infrared camera is preprocessed by image cropping, contrast stretching, denoising, enhancement, and initial segmentation. Second, the Zhang-Suen refinement algorithm is used to extract the vascular skeleton. Third, the Canny edge detection method is used to perform vascular edge detection. Finally, a RETC algorithm is developed to calculate the vessel width. This paper evaluates the accuracy of the proposed RETC algorithm, and experimental results show that the mean absolute error between the vessel width obtained by our algorithm and the reference vessel width is as low as 0.36, with a variance of only 0.10, which can be significantly reduced compared to traditional calculation measurements.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351500/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Forearm Vascular Width Calculation Using Radius Estimation of Tangent Circle.\",\"authors\":\"Qianru Ji, Haoting Liu, Zhen Tian, Song Wang, Qing Li, Dewei Yi\",\"doi\":\"10.3390/bioengineering11080801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the analysis of the functional status of forearm blood vessels, this paper fully considers the orientation of the vascular skeleton and the geometric characteristics of blood vessels and proposes a blood vessel width calculation algorithm based on the radius estimation of the tangent circle (RETC) in forearm near-infrared images. First, the initial infrared image obtained by the infrared camera is preprocessed by image cropping, contrast stretching, denoising, enhancement, and initial segmentation. Second, the Zhang-Suen refinement algorithm is used to extract the vascular skeleton. Third, the Canny edge detection method is used to perform vascular edge detection. Finally, a RETC algorithm is developed to calculate the vessel width. This paper evaluates the accuracy of the proposed RETC algorithm, and experimental results show that the mean absolute error between the vessel width obtained by our algorithm and the reference vessel width is as low as 0.36, with a variance of only 0.10, which can be significantly reduced compared to traditional calculation measurements.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351500/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080801\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对前臂血管功能状态的分析,本文充分考虑了血管骨架的方位和血管的几何特征,提出了一种基于前臂近红外图像切圆半径估计(RETC)的血管宽度计算算法。首先,对红外相机获取的初始红外图像进行图像裁剪、对比度拉伸、去噪、增强和初始分割等预处理。其次,使用 Zhang-Suen 精细化算法提取血管骨架。第三,使用 Canny 边缘检测法进行血管边缘检测。最后,开发了一种 RETC 算法来计算血管宽度。本文对所提出的 RETC 算法的准确性进行了评估,实验结果表明,我们的算法得到的血管宽度与参考血管宽度之间的平均绝对误差低至 0.36,方差仅为 0.10,与传统的计算测量方法相比,可以大大降低误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Infrared Forearm Vascular Width Calculation Using Radius Estimation of Tangent Circle.

In response to the analysis of the functional status of forearm blood vessels, this paper fully considers the orientation of the vascular skeleton and the geometric characteristics of blood vessels and proposes a blood vessel width calculation algorithm based on the radius estimation of the tangent circle (RETC) in forearm near-infrared images. First, the initial infrared image obtained by the infrared camera is preprocessed by image cropping, contrast stretching, denoising, enhancement, and initial segmentation. Second, the Zhang-Suen refinement algorithm is used to extract the vascular skeleton. Third, the Canny edge detection method is used to perform vascular edge detection. Finally, a RETC algorithm is developed to calculate the vessel width. This paper evaluates the accuracy of the proposed RETC algorithm, and experimental results show that the mean absolute error between the vessel width obtained by our algorithm and the reference vessel width is as low as 0.36, with a variance of only 0.10, which can be significantly reduced compared to traditional calculation measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信