Mohd Azman Yusoff, Pouya Mohammadi, Fisal Ahmad, Nur Azura Sanusi, Homa Hosseinzadeh-Bandbafha, Hassan Vatanparast, Mortaza Aghbashlo, Meisam Tabatabaei
{"title":"海鲜废物的价值评估:生物精炼应用中的生命周期评估研究综述。","authors":"Mohd Azman Yusoff, Pouya Mohammadi, Fisal Ahmad, Nur Azura Sanusi, Homa Hosseinzadeh-Bandbafha, Hassan Vatanparast, Mortaza Aghbashlo, Meisam Tabatabaei","doi":"10.1016/j.scitotenv.2024.175810","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications.\",\"authors\":\"Mohd Azman Yusoff, Pouya Mohammadi, Fisal Ahmad, Nur Azura Sanusi, Homa Hosseinzadeh-Bandbafha, Hassan Vatanparast, Mortaza Aghbashlo, Meisam Tabatabaei\",\"doi\":\"10.1016/j.scitotenv.2024.175810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175810\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175810","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications.
The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.