Shewanella Oneidensis MR-1 通过光驱动电子传递实现长期自养生长和太阳能到化学物质的转化

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2024-12-16 Epub Date: 2024-10-22 DOI:10.1002/anie.202412072
Yan Shi, Kejing Zhang, Jianxin Chen, Bingtian Zhang, Xun Guan, Xin Wang, Tong Zhang, Han Song, Long Zou, Xiangfeng Duan, Haichun Gao, Zhang Lin
{"title":"Shewanella Oneidensis MR-1 通过光驱动电子传递实现长期自养生长和太阳能到化学物质的转化","authors":"Yan Shi, Kejing Zhang, Jianxin Chen, Bingtian Zhang, Xun Guan, Xin Wang, Tong Zhang, Han Song, Long Zou, Xiangfeng Duan, Haichun Gao, Zhang Lin","doi":"10.1002/anie.202412072","DOIUrl":null,"url":null,"abstract":"<p><p>Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO<sub>2</sub> for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO<sub>2</sub> fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202412072"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Autotrophic Growth and Solar-to-Chemical Conversion in Shewanella Oneidensis MR-1 through Light-Driven Electron Transfer.\",\"authors\":\"Yan Shi, Kejing Zhang, Jianxin Chen, Bingtian Zhang, Xun Guan, Xin Wang, Tong Zhang, Han Song, Long Zou, Xiangfeng Duan, Haichun Gao, Zhang Lin\",\"doi\":\"10.1002/anie.202412072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO<sub>2</sub> for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO<sub>2</sub> fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\" \",\"pages\":\"e202412072\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202412072\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412072","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

雪旺菌属的成员以其多用途的电子接受途径而闻名,这使它们能够将有机物的分解与各种终端电子接受体的还原结合起来,从而在不同的环境中进行异养生长。在此,我们报告了 Shewanella oneidensis MR-1 利用生物源 CdS 纳米粒子提供的光电子进行自养生长的情况。这种混合系统能利用二氧化碳进行长达五个多月的光合振荡生产醋酸盐,远远超过了其他只能维持数小时或数天的无机生物混合系统。生化、电化学和转录组分析表明,S. oneidensis MR-1 从照明的 CdS 纳米粒子中高效吸收电子,为刺激之前被忽视的还原性甘氨酸途径固定二氧化碳提供了充足的能量。通过光子诱导硫物种中的电再循环,实现了从太阳能到化学能的持续转换。总之,我们的研究结果表明,这种矿物辅助光合作用作为一种广泛存在的独特光能转换模式,可以支持非光合微生物在营养缺乏的环境中持续光自养生长,并介导碳和硫耦合循环的逆转,从而产生以前未知的环境效应。此外,该混合系统还提供了一个可持续和灵活的平台,用于开发各种太阳能产品,实现碳中和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Term Autotrophic Growth and Solar-to-Chemical Conversion in Shewanella Oneidensis MR-1 through Light-Driven Electron Transfer.

Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信