保证满足闭环机会约束条件的无界乘法噪声线性系统随机 MPC

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Christoph Mark;Daniele Ravasio;Marcello Farina;Daniel Görges
{"title":"保证满足闭环机会约束条件的无界乘法噪声线性系统随机 MPC","authors":"Christoph Mark;Daniele Ravasio;Marcello Farina;Daniel Görges","doi":"10.1109/LCSYS.2024.3445723","DOIUrl":null,"url":null,"abstract":"In this letter we consider discrete-time linear systems affected by unbounded multiplicative noise. To control this class of systems, we apply an indirect-feedback stochastic model predictive control scheme that results in formally provable mean square convergence and closed-loop chance constraint satisfaction guarantees. The benefits of the proposed controller will be highlighted on a numerical example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic MPC for Linear Systems With Unbounded Multiplicative Noise Guaranteeing Closed-Loop Chance Constraints Satisfaction\",\"authors\":\"Christoph Mark;Daniele Ravasio;Marcello Farina;Daniel Görges\",\"doi\":\"10.1109/LCSYS.2024.3445723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter we consider discrete-time linear systems affected by unbounded multiplicative noise. To control this class of systems, we apply an indirect-feedback stochastic model predictive control scheme that results in formally provable mean square convergence and closed-loop chance constraint satisfaction guarantees. The benefits of the proposed controller will be highlighted on a numerical example.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638734/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638734/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们考虑了受无约束乘法噪声影响的离散时间线性系统。为了控制这类系统,我们采用了一种间接反馈随机模型预测控制方案,该方案可实现形式上可证明的均方收敛和闭环机会约束满足保证。我们将通过一个数值示例来强调所提控制器的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic MPC for Linear Systems With Unbounded Multiplicative Noise Guaranteeing Closed-Loop Chance Constraints Satisfaction
In this letter we consider discrete-time linear systems affected by unbounded multiplicative noise. To control this class of systems, we apply an indirect-feedback stochastic model predictive control scheme that results in formally provable mean square convergence and closed-loop chance constraint satisfaction guarantees. The benefits of the proposed controller will be highlighted on a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信