André Monteiro Klen , Stefano Bonduà , Sara Kasmaeeyazdi , Milene Sabino Lana , Danielle Aparecida de Menezes , Pedro Gabriel de Carvalho
{"title":"基于费雪分布的模糊 K-Means 算法,用于识别岩石不连续集","authors":"André Monteiro Klen , Stefano Bonduà , Sara Kasmaeeyazdi , Milene Sabino Lana , Danielle Aparecida de Menezes , Pedro Gabriel de Carvalho","doi":"10.1016/j.ijrmms.2024.105879","DOIUrl":null,"url":null,"abstract":"<div><p>Rock discontinuities significantly impact the mechanical and hydraulic behavior of rock masses. A crucial aspect of rock engineering involves classifying discontinuities with similar orientations into groups. For this purpose, clustering algorithms, such as K-Means and Fuzzy K-Means (FKM), have been employed. However, the outcomes of these algorithms are influenced by the selection of initial cluster centers. This paper proposes an improved FKM algorithm to automatically identify rock discontinuity sets based on the Fisher distribution (FFKM). The algorithm uses the Fisher distribution to generate and select appropriate initial cluster centers. The performance of FFKM was initially validated using a published data set, and its results were compared with other clustering methods commonly used for grouping discontinuities. Results demonstrated the superior performance of FFKM over the FKM algorithm, comparable to other methods. Subsequently, the proposed algorithm was employed to analyze a fracture data set sampled at an open-pit iron mine. The FFKM facilitated identifying the correct number of sets and produced results consistent with the fracture sets observed in the field. Finally, the algorithm was verified using an artificial discontinuity data set, and the results demonstrated that the method correctly identified the number of sets and provided discontinuity sets similar to the original data set. The FFKM algorithm offers significant advantages: it maintains the essential characteristics of the FKM algorithm, effectively addresses the challenge of selecting suitable initial cluster centers, requires only the expected number of discontinuity sets as an input parameter, processes data within an acceptable computation time, serves as a tool for defining the number of discontinuity sets, and mitigates the drawbacks of the stereographic projection method.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"182 ","pages":"Article 105879"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy K-Means algorithm based on Fisher distribution for the identification of rock discontinuity sets\",\"authors\":\"André Monteiro Klen , Stefano Bonduà , Sara Kasmaeeyazdi , Milene Sabino Lana , Danielle Aparecida de Menezes , Pedro Gabriel de Carvalho\",\"doi\":\"10.1016/j.ijrmms.2024.105879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rock discontinuities significantly impact the mechanical and hydraulic behavior of rock masses. A crucial aspect of rock engineering involves classifying discontinuities with similar orientations into groups. For this purpose, clustering algorithms, such as K-Means and Fuzzy K-Means (FKM), have been employed. However, the outcomes of these algorithms are influenced by the selection of initial cluster centers. This paper proposes an improved FKM algorithm to automatically identify rock discontinuity sets based on the Fisher distribution (FFKM). The algorithm uses the Fisher distribution to generate and select appropriate initial cluster centers. The performance of FFKM was initially validated using a published data set, and its results were compared with other clustering methods commonly used for grouping discontinuities. Results demonstrated the superior performance of FFKM over the FKM algorithm, comparable to other methods. Subsequently, the proposed algorithm was employed to analyze a fracture data set sampled at an open-pit iron mine. The FFKM facilitated identifying the correct number of sets and produced results consistent with the fracture sets observed in the field. Finally, the algorithm was verified using an artificial discontinuity data set, and the results demonstrated that the method correctly identified the number of sets and provided discontinuity sets similar to the original data set. The FFKM algorithm offers significant advantages: it maintains the essential characteristics of the FKM algorithm, effectively addresses the challenge of selecting suitable initial cluster centers, requires only the expected number of discontinuity sets as an input parameter, processes data within an acceptable computation time, serves as a tool for defining the number of discontinuity sets, and mitigates the drawbacks of the stereographic projection method.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"182 \",\"pages\":\"Article 105879\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002442\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002442","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A fuzzy K-Means algorithm based on Fisher distribution for the identification of rock discontinuity sets
Rock discontinuities significantly impact the mechanical and hydraulic behavior of rock masses. A crucial aspect of rock engineering involves classifying discontinuities with similar orientations into groups. For this purpose, clustering algorithms, such as K-Means and Fuzzy K-Means (FKM), have been employed. However, the outcomes of these algorithms are influenced by the selection of initial cluster centers. This paper proposes an improved FKM algorithm to automatically identify rock discontinuity sets based on the Fisher distribution (FFKM). The algorithm uses the Fisher distribution to generate and select appropriate initial cluster centers. The performance of FFKM was initially validated using a published data set, and its results were compared with other clustering methods commonly used for grouping discontinuities. Results demonstrated the superior performance of FFKM over the FKM algorithm, comparable to other methods. Subsequently, the proposed algorithm was employed to analyze a fracture data set sampled at an open-pit iron mine. The FFKM facilitated identifying the correct number of sets and produced results consistent with the fracture sets observed in the field. Finally, the algorithm was verified using an artificial discontinuity data set, and the results demonstrated that the method correctly identified the number of sets and provided discontinuity sets similar to the original data set. The FFKM algorithm offers significant advantages: it maintains the essential characteristics of the FKM algorithm, effectively addresses the challenge of selecting suitable initial cluster centers, requires only the expected number of discontinuity sets as an input parameter, processes data within an acceptable computation time, serves as a tool for defining the number of discontinuity sets, and mitigates the drawbacks of the stereographic projection method.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.