光纳米酶耦合催化葡萄糖氧化,实现高性能酶生物燃料电池

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dandan Hu, Qiwen Su, Yan Gao, Jian-Rong Zhang, Linlin Wang and Jun-Jie Zhu
{"title":"光纳米酶耦合催化葡萄糖氧化,实现高性能酶生物燃料电池","authors":"Dandan Hu, Qiwen Su, Yan Gao, Jian-Rong Zhang, Linlin Wang and Jun-Jie Zhu","doi":"10.1039/D4TA04675G","DOIUrl":null,"url":null,"abstract":"<p >Glucose biofuel cells (GBFCs) are special energy conversion devices using naturally abundant glucose as fuel. However, achieving high power output and stability remains a challenge in existing GBFCs. In this study, we created a photoelectric coupling nanozyme catalyst of Au/BiVO<small><sub>4</sub></small> with triple synergistic promotion effects: the surface plasmon resonance of Au significantly broadened the photo-absorption region, enhanced the light absorption intensity, and increased the carrier density of BiVO<small><sub>4</sub></small>; furthermore, the outstanding electron transfer capacity of Au accelerated the photoelectron separation from the vacancies in BiVO<small><sub>4</sub></small>, endowing BiVO<small><sub>4</sub></small> with excellent photo-corrosion resistance; additionally, the three-dimensional structure of BiVO<small><sub>4</sub></small> provides abundant sites for Au, remarkably improving the loading and catalytic stability of Au. Consequently, the Au/BiVO<small><sub>4</sub></small> catalytic GBFC can simultaneously convert solar and chemical energy stored in glucose into electrical energy, providing an extraordinarily high power density and open-circuit voltage (575 μW cm<small><sup>−2</sup></small> and 0.86 V) and working steadily for 20 hours. Altogether, high power output and high stability are achieved in the Au/BiVO<small><sub>4</sub></small> catalytic GBFC. Thus, this study will significantly propel the development of GBFCs through the innovative application of the photoelectric coupling nanozyme catalytic strategy.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 38","pages":" 25784-25790"},"PeriodicalIF":10.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-nanozyme coupling catalyzes glucose oxidation for high-performance enzymatic biofuel cells†\",\"authors\":\"Dandan Hu, Qiwen Su, Yan Gao, Jian-Rong Zhang, Linlin Wang and Jun-Jie Zhu\",\"doi\":\"10.1039/D4TA04675G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Glucose biofuel cells (GBFCs) are special energy conversion devices using naturally abundant glucose as fuel. However, achieving high power output and stability remains a challenge in existing GBFCs. In this study, we created a photoelectric coupling nanozyme catalyst of Au/BiVO<small><sub>4</sub></small> with triple synergistic promotion effects: the surface plasmon resonance of Au significantly broadened the photo-absorption region, enhanced the light absorption intensity, and increased the carrier density of BiVO<small><sub>4</sub></small>; furthermore, the outstanding electron transfer capacity of Au accelerated the photoelectron separation from the vacancies in BiVO<small><sub>4</sub></small>, endowing BiVO<small><sub>4</sub></small> with excellent photo-corrosion resistance; additionally, the three-dimensional structure of BiVO<small><sub>4</sub></small> provides abundant sites for Au, remarkably improving the loading and catalytic stability of Au. Consequently, the Au/BiVO<small><sub>4</sub></small> catalytic GBFC can simultaneously convert solar and chemical energy stored in glucose into electrical energy, providing an extraordinarily high power density and open-circuit voltage (575 μW cm<small><sup>−2</sup></small> and 0.86 V) and working steadily for 20 hours. Altogether, high power output and high stability are achieved in the Au/BiVO<small><sub>4</sub></small> catalytic GBFC. Thus, this study will significantly propel the development of GBFCs through the innovative application of the photoelectric coupling nanozyme catalytic strategy.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 38\",\"pages\":\" 25784-25790\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04675g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04675g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖生物燃料电池(GBFC)是一种利用天然丰富的葡萄糖作为燃料的特殊能量转换装置。然而,实现高功率输出和稳定性仍然是现有 GBFC 面临的挑战。在这项研究中,我们创建了一种具有三重协同促进效应的 Au/BiVO4 光电耦合纳米酶催化剂:金的表面等离子体共振显著拓宽了光吸收区域,增强了光吸收强度,提高了 BiVO4 的载流子密度;此外,金出色的电子传递能力加速了光电子从 BiVO4 的空位中分离,使 BiVO4 具有优异的抗光腐蚀性;另外,BiVO4 的三维结构为金提供了丰富的位点,显著提高了金的负载量和催化稳定性。因此,用于 GBFC 的金/BiVO4 催化剂可同时将太阳能和葡萄糖中储存的化学能转化为电能,提供超高功率密度和开路电压(575 μW cm-2,0.86 V),并可稳定工作 20 小时。总之,金/BiVO4 催化 GBFC 实现了高功率输出和高稳定性。因此,这项研究将通过光电耦合纳米酶催化策略的创新应用,极大地推动 GBFC 的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photo-nanozyme coupling catalyzes glucose oxidation for high-performance enzymatic biofuel cells†

Photo-nanozyme coupling catalyzes glucose oxidation for high-performance enzymatic biofuel cells†

Glucose biofuel cells (GBFCs) are special energy conversion devices using naturally abundant glucose as fuel. However, achieving high power output and stability remains a challenge in existing GBFCs. In this study, we created a photoelectric coupling nanozyme catalyst of Au/BiVO4 with triple synergistic promotion effects: the surface plasmon resonance of Au significantly broadened the photo-absorption region, enhanced the light absorption intensity, and increased the carrier density of BiVO4; furthermore, the outstanding electron transfer capacity of Au accelerated the photoelectron separation from the vacancies in BiVO4, endowing BiVO4 with excellent photo-corrosion resistance; additionally, the three-dimensional structure of BiVO4 provides abundant sites for Au, remarkably improving the loading and catalytic stability of Au. Consequently, the Au/BiVO4 catalytic GBFC can simultaneously convert solar and chemical energy stored in glucose into electrical energy, providing an extraordinarily high power density and open-circuit voltage (575 μW cm−2 and 0.86 V) and working steadily for 20 hours. Altogether, high power output and high stability are achieved in the Au/BiVO4 catalytic GBFC. Thus, this study will significantly propel the development of GBFCs through the innovative application of the photoelectric coupling nanozyme catalytic strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信