Yu Zhao, Jie Qin, Daohan Yu, Yuxiang Liu, Dan Song, Kaifu Tian, Hao Chen, Qile Ye, Xinyu Wang, Tianye Xu, Hanwen Xuan, Nan Sun, Wenbin Ma, Junzhe Zhong, Penggang Sun, Yu Song, Jingze Hu, Yunlei Zhao, Xintong Hou, Xiangqi Meng, Chuanlu Jiang, Jinquan Cai
{"title":"用于胶质母细胞瘤靶向 siRNA 递送和 CRISPR-Cas 基因编辑的聚合物锁定熔融脂质体","authors":"Yu Zhao, Jie Qin, Daohan Yu, Yuxiang Liu, Dan Song, Kaifu Tian, Hao Chen, Qile Ye, Xinyu Wang, Tianye Xu, Hanwen Xuan, Nan Sun, Wenbin Ma, Junzhe Zhong, Penggang Sun, Yu Song, Jingze Hu, Yunlei Zhao, Xintong Hou, Xiangqi Meng, Chuanlu Jiang, Jinquan Cai","doi":"10.1038/s41565-024-01769-0","DOIUrl":null,"url":null,"abstract":"In patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR–Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging. Here we demonstrate a polymer-locking fusogenic liposome (Plofsome) that can be transported across the blood–brain barrier (BBB) and deliver short interfering RNA or CRISPR–Cas9 ribonucleoprotein complexes into the cytoplasm of GBM cells. Plofsome is designed by integrating a ‘lock’ into the fusogenic liposome using a traceless reactive oxygen species (ROS)-cleavable linker so that fusion occurs only after crossing the BBB and entering the GBM tissue with high ROS levels. Our results showed that MDK suppression by Plofsomes significantly reduced TMZ resistance and inhibited GBM growth in orthotopic brain tumour models. Importantly, Plofsomes are effective only at tumour sites and not in normal tissues, which improves the safety of combined RNAi and CRISPR–Cas9 therapeutics. Delivering gene editing materials to the brain for glioblastoma therapy can boost the efficacy of chemotherapy. Here the authors reduce resistance to temozolomide using a reactive oxygen species-sensitive polymer-locking fusogenic liposome that can cross the blood–brain barrier and deliver short interfering RNA or CRISPR–Cas to glioblastoma with high specificity.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 12","pages":"1869-1879"},"PeriodicalIF":38.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR–Cas gene editing\",\"authors\":\"Yu Zhao, Jie Qin, Daohan Yu, Yuxiang Liu, Dan Song, Kaifu Tian, Hao Chen, Qile Ye, Xinyu Wang, Tianye Xu, Hanwen Xuan, Nan Sun, Wenbin Ma, Junzhe Zhong, Penggang Sun, Yu Song, Jingze Hu, Yunlei Zhao, Xintong Hou, Xiangqi Meng, Chuanlu Jiang, Jinquan Cai\",\"doi\":\"10.1038/s41565-024-01769-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR–Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging. Here we demonstrate a polymer-locking fusogenic liposome (Plofsome) that can be transported across the blood–brain barrier (BBB) and deliver short interfering RNA or CRISPR–Cas9 ribonucleoprotein complexes into the cytoplasm of GBM cells. Plofsome is designed by integrating a ‘lock’ into the fusogenic liposome using a traceless reactive oxygen species (ROS)-cleavable linker so that fusion occurs only after crossing the BBB and entering the GBM tissue with high ROS levels. Our results showed that MDK suppression by Plofsomes significantly reduced TMZ resistance and inhibited GBM growth in orthotopic brain tumour models. Importantly, Plofsomes are effective only at tumour sites and not in normal tissues, which improves the safety of combined RNAi and CRISPR–Cas9 therapeutics. Delivering gene editing materials to the brain for glioblastoma therapy can boost the efficacy of chemotherapy. Here the authors reduce resistance to temozolomide using a reactive oxygen species-sensitive polymer-locking fusogenic liposome that can cross the blood–brain barrier and deliver short interfering RNA or CRISPR–Cas to glioblastoma with high specificity.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 12\",\"pages\":\"1869-1879\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01769-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01769-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polymer-locking fusogenic liposomes for glioblastoma-targeted siRNA delivery and CRISPR–Cas gene editing
In patients with glioblastoma (GBM), upregulated midkine (MDK) limits the survival benefits conferred by temozolomide (TMZ). RNA interference (RNAi) and CRISPR–Cas9 gene editing technology are attractive approaches for regulating MDK expression. However, delivering these biologics to GBM tissue is challenging. Here we demonstrate a polymer-locking fusogenic liposome (Plofsome) that can be transported across the blood–brain barrier (BBB) and deliver short interfering RNA or CRISPR–Cas9 ribonucleoprotein complexes into the cytoplasm of GBM cells. Plofsome is designed by integrating a ‘lock’ into the fusogenic liposome using a traceless reactive oxygen species (ROS)-cleavable linker so that fusion occurs only after crossing the BBB and entering the GBM tissue with high ROS levels. Our results showed that MDK suppression by Plofsomes significantly reduced TMZ resistance and inhibited GBM growth in orthotopic brain tumour models. Importantly, Plofsomes are effective only at tumour sites and not in normal tissues, which improves the safety of combined RNAi and CRISPR–Cas9 therapeutics. Delivering gene editing materials to the brain for glioblastoma therapy can boost the efficacy of chemotherapy. Here the authors reduce resistance to temozolomide using a reactive oxygen species-sensitive polymer-locking fusogenic liposome that can cross the blood–brain barrier and deliver short interfering RNA or CRISPR–Cas to glioblastoma with high specificity.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.