利用圆柱形结构的相变材料提高空调设备的效率

Energy Storage Pub Date : 2024-08-27 DOI:10.1002/est2.70025
Arun Kumar Sao, Arun Arora, Mukesh Kumar Sahu
{"title":"利用圆柱形结构的相变材料提高空调设备的效率","authors":"Arun Kumar Sao,&nbsp;Arun Arora,&nbsp;Mukesh Kumar Sahu","doi":"10.1002/est2.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The goal of the current study is to determine how the SST <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ k-\\omega $$</annotation>\n </semantics></math> and the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ɛ</mi>\n </mrow>\n <annotation>$$ k-\\varepsilon $$</annotation>\n </semantics></math> turbulence models prediction on PCM with cylindrical configuration affect AC performance and PCM discharging when coupled with an AC unit. For simulation, 308.15 K and 318.15 K, the inflow air temperature has been considered with a fixed 33.6 L/s intake air flow rate. The low outside temperature charges the PCMs during the night. During the daytime, heated ambient air is cooled by the PCM heat exchanger before passing over the unit condenser. The present outcomes show that using the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n <annotation>$$ k-\\varepsilon $$</annotation>\n </semantics></math> model, the cylindrical PCM has the lowest time of complete melting. The temperature contours demonstrate that turbulence occurs, particularly at higher temperatures, in the PCM melting zone within the solid region. This implies that there is increased convection in this area. The maximum improved percentage in COP increases as the rising input air temperature for both turbulence models increases. The average power saving of AC at 308.15 K of an input air temperature for 83.33 min is predicted by both the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ɛ</mi>\n </mrow>\n <annotation>$$ k-\\varepsilon $$</annotation>\n </semantics></math> and the SST <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ k-\\omega $$</annotation>\n </semantics></math> to be 14.0905 W and 14.1089 W, respectively.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the Efficacy of an Air Conditioning Unit by Utilizing Phase Change Material With Cylindrical Configuration\",\"authors\":\"Arun Kumar Sao,&nbsp;Arun Arora,&nbsp;Mukesh Kumar Sahu\",\"doi\":\"10.1002/est2.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The goal of the current study is to determine how the SST <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ k-\\\\omega $$</annotation>\\n </semantics></math> and the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ɛ</mi>\\n </mrow>\\n <annotation>$$ k-\\\\varepsilon $$</annotation>\\n </semantics></math> turbulence models prediction on PCM with cylindrical configuration affect AC performance and PCM discharging when coupled with an AC unit. For simulation, 308.15 K and 318.15 K, the inflow air temperature has been considered with a fixed 33.6 L/s intake air flow rate. The low outside temperature charges the PCMs during the night. During the daytime, heated ambient air is cooled by the PCM heat exchanger before passing over the unit condenser. The present outcomes show that using the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ε</mi>\\n </mrow>\\n <annotation>$$ k-\\\\varepsilon $$</annotation>\\n </semantics></math> model, the cylindrical PCM has the lowest time of complete melting. The temperature contours demonstrate that turbulence occurs, particularly at higher temperatures, in the PCM melting zone within the solid region. This implies that there is increased convection in this area. The maximum improved percentage in COP increases as the rising input air temperature for both turbulence models increases. The average power saving of AC at 308.15 K of an input air temperature for 83.33 min is predicted by both the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ɛ</mi>\\n </mrow>\\n <annotation>$$ k-\\\\varepsilon $$</annotation>\\n </semantics></math> and the SST <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ k-\\\\omega $$</annotation>\\n </semantics></math> to be 14.0905 W and 14.1089 W, respectively.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前研究的目标是确定 SST k - ω $$ k-\omega $$ 和标准 k - ɛ $$ k-\varepsilon $$ 湍流模型对圆柱形结构 PCM 的预测如何影响空调性能以及与空调设备耦合时 PCM 的排出。在模拟时,考虑了 308.15 K 和 318.15 K 的进气温度和固定的 33.6 L/s 进气流速。较低的室外温度会在夜间对 PCM 进行充电。在白天,加热的环境空气在通过机组冷凝器之前被 PCM 热交换器冷却。本研究结果表明,使用标准 k - ε $$ k-\varepsilon $$ 模型,圆柱形 PCM 的完全熔化时间最短。温度等值线表明,在固体区域内的 PCM 熔化区出现了湍流,尤其是在较高温度下。这意味着该区域的对流增加。随着两种湍流模型输入空气温度的升高,COP 的最大改善百分比也在增加。根据标准 k - ɛ $$ k-\varepsilon $$ 和 SST k - ω $$ k-\omega $$ 预测,在输入空气温度为 308.15 K 时,交流电的平均节电时间为 83.33 分钟,分别为 14.0905 W 和 14.1089 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing the Efficacy of an Air Conditioning Unit by Utilizing Phase Change Material With Cylindrical Configuration

The goal of the current study is to determine how the SST k ω $$ k-\omega $$ and the standard k ɛ $$ k-\varepsilon $$ turbulence models prediction on PCM with cylindrical configuration affect AC performance and PCM discharging when coupled with an AC unit. For simulation, 308.15 K and 318.15 K, the inflow air temperature has been considered with a fixed 33.6 L/s intake air flow rate. The low outside temperature charges the PCMs during the night. During the daytime, heated ambient air is cooled by the PCM heat exchanger before passing over the unit condenser. The present outcomes show that using the standard k ε $$ k-\varepsilon $$ model, the cylindrical PCM has the lowest time of complete melting. The temperature contours demonstrate that turbulence occurs, particularly at higher temperatures, in the PCM melting zone within the solid region. This implies that there is increased convection in this area. The maximum improved percentage in COP increases as the rising input air temperature for both turbulence models increases. The average power saving of AC at 308.15 K of an input air temperature for 83.33 min is predicted by both the standard k ɛ $$ k-\varepsilon $$ and the SST k ω $$ k-\omega $$ to be 14.0905 W and 14.1089 W, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信