{"title":"视觉负荷视角下山区公路隧道群驾驶风险降低研究","authors":"Hao Lu, Tongtong Shang, Ting Shang","doi":"10.1155/2024/6117160","DOIUrl":null,"url":null,"abstract":"<div>\n <p>More highway built in the mountains in recent years, the driving risk in the tunnel group is becoming a new issue. This paper analyzed the driving risk in the mountain highway tunnel group from the perspective of visual load. Based on vehicle test in the Pengshui-Xiantang tunnel group in China, the evolution characteristics of MTPA were quantitatively analyzed, and the random forest model was constructed to discuss the effect factors of the maximum transient velocity value of the pupil area (MTPA) in different sections. The results are as follows: (1) The MTPA frequently presents a tendency of steep rise and fall in the tunnel group. MTPA in the second tunnel is significantly higher than the first tunnel. (2) The mountain tunnel group can be divided into nine sections; the velocity, design luminance, measured luminance, and location have different effects on MTPA in each section. Due to the complex terrain conditions, the location has a more significant impact on MTPA in the second tunnel. (3) The first tunnel entrance, the first tunnel exit to the second tunnel entrance, and the second tunnel exit are the areas with more significant pressure on drivers in the tunnel group. The visual load of drivers in the exit section of the last tunnel is the greatest. The driving risk reduction recommendations include improving the transition lighting design of the second tunnel, clarifying the tunnel group identification, and adding safety features at the tunnel connection section, in order to clarify the driver’s expectations and reduce the fear of the unknown mountain environment.</p>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6117160","citationCount":"0","resultStr":"{\"title\":\"Study on the Driving Risk Reduction in the Mountain Highway Tunnel Group under the Perspective of Visual Load\",\"authors\":\"Hao Lu, Tongtong Shang, Ting Shang\",\"doi\":\"10.1155/2024/6117160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>More highway built in the mountains in recent years, the driving risk in the tunnel group is becoming a new issue. This paper analyzed the driving risk in the mountain highway tunnel group from the perspective of visual load. Based on vehicle test in the Pengshui-Xiantang tunnel group in China, the evolution characteristics of MTPA were quantitatively analyzed, and the random forest model was constructed to discuss the effect factors of the maximum transient velocity value of the pupil area (MTPA) in different sections. The results are as follows: (1) The MTPA frequently presents a tendency of steep rise and fall in the tunnel group. MTPA in the second tunnel is significantly higher than the first tunnel. (2) The mountain tunnel group can be divided into nine sections; the velocity, design luminance, measured luminance, and location have different effects on MTPA in each section. Due to the complex terrain conditions, the location has a more significant impact on MTPA in the second tunnel. (3) The first tunnel entrance, the first tunnel exit to the second tunnel entrance, and the second tunnel exit are the areas with more significant pressure on drivers in the tunnel group. The visual load of drivers in the exit section of the last tunnel is the greatest. The driving risk reduction recommendations include improving the transition lighting design of the second tunnel, clarifying the tunnel group identification, and adding safety features at the tunnel connection section, in order to clarify the driver’s expectations and reduce the fear of the unknown mountain environment.</p>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6117160\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6117160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6117160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Study on the Driving Risk Reduction in the Mountain Highway Tunnel Group under the Perspective of Visual Load
More highway built in the mountains in recent years, the driving risk in the tunnel group is becoming a new issue. This paper analyzed the driving risk in the mountain highway tunnel group from the perspective of visual load. Based on vehicle test in the Pengshui-Xiantang tunnel group in China, the evolution characteristics of MTPA were quantitatively analyzed, and the random forest model was constructed to discuss the effect factors of the maximum transient velocity value of the pupil area (MTPA) in different sections. The results are as follows: (1) The MTPA frequently presents a tendency of steep rise and fall in the tunnel group. MTPA in the second tunnel is significantly higher than the first tunnel. (2) The mountain tunnel group can be divided into nine sections; the velocity, design luminance, measured luminance, and location have different effects on MTPA in each section. Due to the complex terrain conditions, the location has a more significant impact on MTPA in the second tunnel. (3) The first tunnel entrance, the first tunnel exit to the second tunnel entrance, and the second tunnel exit are the areas with more significant pressure on drivers in the tunnel group. The visual load of drivers in the exit section of the last tunnel is the greatest. The driving risk reduction recommendations include improving the transition lighting design of the second tunnel, clarifying the tunnel group identification, and adding safety features at the tunnel connection section, in order to clarify the driver’s expectations and reduce the fear of the unknown mountain environment.