论巴黎废墟变异类型下的股息和注资时刻

Pub Date : 2024-08-23 DOI:10.1016/j.spl.2024.110225
Kaixin Yan , Ruixing Ming , Haibin Wang , Wenyuan Wang
{"title":"论巴黎废墟变异类型下的股息和注资时刻","authors":"Kaixin Yan ,&nbsp;Ruixing Ming ,&nbsp;Haibin Wang ,&nbsp;Wenyuan Wang","doi":"10.1016/j.spl.2024.110225","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers a risk model driven by a spectrally negative Lévy process, where any surplus above <span><math><mi>b</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>) is deducted away as dividends and any deficit is covered by injected capitals/raised money. For such a risk model, we define a variant of Parisian ruin time as the first time that the surplus process stays continuously below <span><math><mi>a</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>) for a time interval with length larger than some pre-specified exponential random variable that is marked on this time interval. A recursive formula for the moments of the Net Present Value (NPV) of dividends paid until Parisian ruin is provided. The expected NPV of capitals injected until the Parisian ruin time is also characterized compactly in terms of the scale functions of the underlying process.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224001949/pdfft?md5=26240b0a2b44124d6b5a37647e6f62f7&pid=1-s2.0-S0167715224001949-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the moments of dividends and capital injections under a variant type of Parisian ruin\",\"authors\":\"Kaixin Yan ,&nbsp;Ruixing Ming ,&nbsp;Haibin Wang ,&nbsp;Wenyuan Wang\",\"doi\":\"10.1016/j.spl.2024.110225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers a risk model driven by a spectrally negative Lévy process, where any surplus above <span><math><mi>b</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>) is deducted away as dividends and any deficit is covered by injected capitals/raised money. For such a risk model, we define a variant of Parisian ruin time as the first time that the surplus process stays continuously below <span><math><mi>a</mi></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>) for a time interval with length larger than some pre-specified exponential random variable that is marked on this time interval. A recursive formula for the moments of the Net Present Value (NPV) of dividends paid until Parisian ruin is provided. The expected NPV of capitals injected until the Parisian ruin time is also characterized compactly in terms of the scale functions of the underlying process.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001949/pdfft?md5=26240b0a2b44124d6b5a37647e6f62f7&pid=1-s2.0-S0167715224001949-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个由光谱负莱维过程驱动的风险模型,其中任何高于 b(0<b<∞)的盈余都会作为股息被扣除,而任何赤字都会由注入的资本/筹集的资金来弥补。对于这种风险模型,我们将巴黎毁灭时间的变种定义为:盈余过程第一次持续低于 a(0<a<b<∞)的时间间隔,该时间间隔的长度大于某个预先指定的指数随机变量,该指数随机变量在该时间间隔上有标记。提供了巴黎毁灭前股息净现值(NPV)矩的递推公式。根据基本过程的尺度函数,还可以紧凑地描述在巴黎毁灭时间之前注入资本的预期净现值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the moments of dividends and capital injections under a variant type of Parisian ruin

This paper considers a risk model driven by a spectrally negative Lévy process, where any surplus above b (0<b<) is deducted away as dividends and any deficit is covered by injected capitals/raised money. For such a risk model, we define a variant of Parisian ruin time as the first time that the surplus process stays continuously below a (0<a<b<) for a time interval with length larger than some pre-specified exponential random variable that is marked on this time interval. A recursive formula for the moments of the Net Present Value (NPV) of dividends paid until Parisian ruin is provided. The expected NPV of capitals injected until the Parisian ruin time is also characterized compactly in terms of the scale functions of the underlying process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信