非局部热敏电阻问题的有限体积法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ibrahim Dahi , Moulay Rchid Sidi Ammi , Montasser Hichmani
{"title":"非局部热敏电阻问题的有限体积法","authors":"Ibrahim Dahi ,&nbsp;Moulay Rchid Sidi Ammi ,&nbsp;Montasser Hichmani","doi":"10.1016/j.apnum.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider a more general version of the nonlocal thermistor problem, which describes the temperature diffusion produced when an electric current passes through a material. We investigate the doubly nonlinear problem where the nonlocal term is present on the right-hand side of the equation that describes the temperature evolution. Specifically, we employ topological degree theory to establish the existence of a solution to the considered problem. Furthermore, we separately address the uniqueness of the obtained solution. Additionally, we establish a priori estimates to demonstrate the convergence of a developed finite volume scheme used for the discretization of the continuous parabolic problem. Finally, to numerically simulate the proposed finite volume scheme, we use the Picard-type iteration process for the fully implicit scheme and approximate the nonlocal term represented by the integral with Simpson's rule to validate the efficiency and robustness of the proposed scheme.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite volume method for a nonlocal thermistor problem\",\"authors\":\"Ibrahim Dahi ,&nbsp;Moulay Rchid Sidi Ammi ,&nbsp;Montasser Hichmani\",\"doi\":\"10.1016/j.apnum.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we consider a more general version of the nonlocal thermistor problem, which describes the temperature diffusion produced when an electric current passes through a material. We investigate the doubly nonlinear problem where the nonlocal term is present on the right-hand side of the equation that describes the temperature evolution. Specifically, we employ topological degree theory to establish the existence of a solution to the considered problem. Furthermore, we separately address the uniqueness of the obtained solution. Additionally, we establish a priori estimates to demonstrate the convergence of a developed finite volume scheme used for the discretization of the continuous parabolic problem. Finally, to numerically simulate the proposed finite volume scheme, we use the Picard-type iteration process for the fully implicit scheme and approximate the nonlocal term represented by the integral with Simpson's rule to validate the efficiency and robustness of the proposed scheme.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了非局部热敏电阻问题的更一般版本,该问题描述了电流通过材料时产生的温度扩散。我们研究的是双重非线性问题,其中非局部项出现在描述温度演化的方程右侧。具体来说,我们采用拓扑度理论来确定所考虑问题的解的存在性。此外,我们还分别讨论了所获解的唯一性问题。此外,我们还建立了先验估计,以证明用于离散化连续抛物线问题的有限体积方案的收敛性。最后,为了对所提出的有限体积方案进行数值模拟,我们使用了全隐式方案的皮卡德迭代过程,并用辛普森法则对积分所代表的非局部项进行了近似,从而验证了所提出方案的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite volume method for a nonlocal thermistor problem

In this work, we consider a more general version of the nonlocal thermistor problem, which describes the temperature diffusion produced when an electric current passes through a material. We investigate the doubly nonlinear problem where the nonlocal term is present on the right-hand side of the equation that describes the temperature evolution. Specifically, we employ topological degree theory to establish the existence of a solution to the considered problem. Furthermore, we separately address the uniqueness of the obtained solution. Additionally, we establish a priori estimates to demonstrate the convergence of a developed finite volume scheme used for the discretization of the continuous parabolic problem. Finally, to numerically simulate the proposed finite volume scheme, we use the Picard-type iteration process for the fully implicit scheme and approximate the nonlocal term represented by the integral with Simpson's rule to validate the efficiency and robustness of the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信