三维打印铝超材料的定向机械和能量吸收特性

Manpreet Singh , Arun Arjunan , Ahmad Baroutaji , Chameekara T. Wanniarachchi , Ayyappan S. Praveen , John Robinson , Aaron Vance , Martin Appiah , Abul Arafat
{"title":"三维打印铝超材料的定向机械和能量吸收特性","authors":"Manpreet Singh ,&nbsp;Arun Arjunan ,&nbsp;Ahmad Baroutaji ,&nbsp;Chameekara T. Wanniarachchi ,&nbsp;Ayyappan S. Praveen ,&nbsp;John Robinson ,&nbsp;Aaron Vance ,&nbsp;Martin Appiah ,&nbsp;Abul Arafat","doi":"10.1016/j.nxmate.2024.100356","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of 3D-printed AlSi10Mg auxetic structures for diverse mechanical and energy-absorbing needs remains untapped. This article reveals a multi-criteria framework for the laser powder bed fused (L-PBF) <span><math><mrow><mo>−</mo><mi>υ</mi></mrow></math></span> architecture considering elastic modulus (E), yield strength (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>), specific energy absorption (SEA), peak crush force (PCF) and crush force efficiency (CFE). The framework seamlessly combines trial data, multi-criteria decision-making, and performance indicators. Five auxetic structures were 3D-printed, characterised for mechanical and energy absorption traits within a 0.17–0.26 relative density range. The outcomes revealed a range of values for various parameters, including the Poisson’s ratio (−0.03 to −0.22), porosity (80.87–87.60 %), CFE (33–83 %), elastic modulus (100–632 MPa), yield strength (1.8–10 MPa), and SEA (0.5–6.8 kJ/kg). The reliability of these structures was ensured through a meticulous selection process based on an extensive literature review and empirical validation. To address the limitations of theoretical models, our work goes beyond theoretical predictions by experimentally validating these properties and integrating advanced methodologies such as the ‘analytic hierarchy process’ (AHP) and the ‘technique for order of preference by similarity to ideal solution’ <em>(</em>TOPSIS)<em>.</em> This allows us to determine the best-performing auxetic architecture. The decision-making process was informed by five user-defined parameters prioritised in the order of CFE&gt;<span><math><mrow><mo>−</mo><mi>υ</mi></mrow></math></span>&gt; E&gt; <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>&gt; SEA based on their relative closeness identifying AUX5 as the best performing auxetic architecture. This study introduces an innovative method for crafting scenario-based auxetic architectures with varying performance levels based on their relative importance.</p></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100356"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949822824002533/pdfft?md5=3dcc97fadb7064998d509bba4bf7f3b9&pid=1-s2.0-S2949822824002533-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Targeted mechanical and energy absorption properties of 3D printed aluminium metamaterials\",\"authors\":\"Manpreet Singh ,&nbsp;Arun Arjunan ,&nbsp;Ahmad Baroutaji ,&nbsp;Chameekara T. Wanniarachchi ,&nbsp;Ayyappan S. Praveen ,&nbsp;John Robinson ,&nbsp;Aaron Vance ,&nbsp;Martin Appiah ,&nbsp;Abul Arafat\",\"doi\":\"10.1016/j.nxmate.2024.100356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The potential of 3D-printed AlSi10Mg auxetic structures for diverse mechanical and energy-absorbing needs remains untapped. This article reveals a multi-criteria framework for the laser powder bed fused (L-PBF) <span><math><mrow><mo>−</mo><mi>υ</mi></mrow></math></span> architecture considering elastic modulus (E), yield strength (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>), specific energy absorption (SEA), peak crush force (PCF) and crush force efficiency (CFE). The framework seamlessly combines trial data, multi-criteria decision-making, and performance indicators. Five auxetic structures were 3D-printed, characterised for mechanical and energy absorption traits within a 0.17–0.26 relative density range. The outcomes revealed a range of values for various parameters, including the Poisson’s ratio (−0.03 to −0.22), porosity (80.87–87.60 %), CFE (33–83 %), elastic modulus (100–632 MPa), yield strength (1.8–10 MPa), and SEA (0.5–6.8 kJ/kg). The reliability of these structures was ensured through a meticulous selection process based on an extensive literature review and empirical validation. To address the limitations of theoretical models, our work goes beyond theoretical predictions by experimentally validating these properties and integrating advanced methodologies such as the ‘analytic hierarchy process’ (AHP) and the ‘technique for order of preference by similarity to ideal solution’ <em>(</em>TOPSIS)<em>.</em> This allows us to determine the best-performing auxetic architecture. The decision-making process was informed by five user-defined parameters prioritised in the order of CFE&gt;<span><math><mrow><mo>−</mo><mi>υ</mi></mrow></math></span>&gt; E&gt; <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span>&gt; SEA based on their relative closeness identifying AUX5 as the best performing auxetic architecture. This study introduces an innovative method for crafting scenario-based auxetic architectures with varying performance levels based on their relative importance.</p></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"7 \",\"pages\":\"Article 100356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002533/pdfft?md5=3dcc97fadb7064998d509bba4bf7f3b9&pid=1-s2.0-S2949822824002533-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824002533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维打印 AlSi10Mg 辅助结构在满足各种机械和吸能需求方面的潜力仍有待开发。本文揭示了激光粉末床熔融(L-PBF)-υ 结构的多标准框架,其中考虑了弹性模量(E)、屈服强度(σy)、比能量吸收(SEA)、峰值挤压力(PCF)和挤压力效率(CFE)。该框架将试验数据、多标准决策和性能指标完美地结合在一起。在 0.17-0.26 的相对密度范围内,对五种辅助结构进行了 3D 打印,并对其机械和能量吸收特性进行了表征。结果显示了各种参数的数值范围,包括泊松比(-0.03 至 -0.22)、孔隙率(80.87-87.60%)、CFE(33-83%)、弹性模量(100-632 兆帕)、屈服强度(1.8-10 兆帕)和 SEA(0.5-6.8 千焦/千克)。这些结构的可靠性是在广泛的文献综述和经验验证基础上,通过细致的筛选过程确保的。针对理论模型的局限性,我们的工作超越了理论预测,通过实验验证了这些特性,并整合了 "层次分析法"(AHP)和 "与理想解决方案相似度排序技术"(TOPSIS)等先进方法。这样,我们就能确定性能最佳的辅助结构。决策过程参考了用户定义的五个参数,按照 CFE>-υ>E>σy>SEA 的顺序排列,根据它们的相对接近程度确定 AUX5 为性能最佳的辅助结构。本研究介绍了一种创新方法,用于根据不同性能水平的相对重要性,设计基于场景的辅助架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted mechanical and energy absorption properties of 3D printed aluminium metamaterials

The potential of 3D-printed AlSi10Mg auxetic structures for diverse mechanical and energy-absorbing needs remains untapped. This article reveals a multi-criteria framework for the laser powder bed fused (L-PBF) υ architecture considering elastic modulus (E), yield strength (σy), specific energy absorption (SEA), peak crush force (PCF) and crush force efficiency (CFE). The framework seamlessly combines trial data, multi-criteria decision-making, and performance indicators. Five auxetic structures were 3D-printed, characterised for mechanical and energy absorption traits within a 0.17–0.26 relative density range. The outcomes revealed a range of values for various parameters, including the Poisson’s ratio (−0.03 to −0.22), porosity (80.87–87.60 %), CFE (33–83 %), elastic modulus (100–632 MPa), yield strength (1.8–10 MPa), and SEA (0.5–6.8 kJ/kg). The reliability of these structures was ensured through a meticulous selection process based on an extensive literature review and empirical validation. To address the limitations of theoretical models, our work goes beyond theoretical predictions by experimentally validating these properties and integrating advanced methodologies such as the ‘analytic hierarchy process’ (AHP) and the ‘technique for order of preference by similarity to ideal solution’ (TOPSIS). This allows us to determine the best-performing auxetic architecture. The decision-making process was informed by five user-defined parameters prioritised in the order of CFE>υ> E> σy> SEA based on their relative closeness identifying AUX5 as the best performing auxetic architecture. This study introduces an innovative method for crafting scenario-based auxetic architectures with varying performance levels based on their relative importance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信