氮化石墨碳自催化分解钛酸酯纳米管,提高制氢能力

Ruochen Liu , Shiqi Zhao , Xiaorong Cheng , Luhua Lu , Xiyang Liu , Tianqi Liu , Bochao Dong , Graham Dawson
{"title":"氮化石墨碳自催化分解钛酸酯纳米管,提高制氢能力","authors":"Ruochen Liu ,&nbsp;Shiqi Zhao ,&nbsp;Xiaorong Cheng ,&nbsp;Luhua Lu ,&nbsp;Xiyang Liu ,&nbsp;Tianqi Liu ,&nbsp;Bochao Dong ,&nbsp;Graham Dawson","doi":"10.1016/j.nxmate.2024.100358","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg<sup>−1</sup>h<sup>−1</sup>, much improved compared to GCN, which achieved a rate of 0.56 mmolg<sup>−1</sup>h<sup>−1</sup>. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO<sub>2</sub> nanoparticles, resulting in a nanocomposite material comprising TiO<sub>2</sub> and heterojunctions with GCN. After heating and modification the TiO<sub>2</sub> shows a conduction band edge with a more negative potential than the H<sup>+</sup>/H<sub>2</sub> potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis.</p></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"7 ","pages":"Article 100358"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949822824002557/pdfft?md5=6c01beeec28d49825898ca991b16ee44&pid=1-s2.0-S2949822824002557-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-catalysed breakdown of titanate nanotubes by graphitic carbon nitride resulting in enhanced hydrogen production\",\"authors\":\"Ruochen Liu ,&nbsp;Shiqi Zhao ,&nbsp;Xiaorong Cheng ,&nbsp;Luhua Lu ,&nbsp;Xiyang Liu ,&nbsp;Tianqi Liu ,&nbsp;Bochao Dong ,&nbsp;Graham Dawson\",\"doi\":\"10.1016/j.nxmate.2024.100358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg<sup>−1</sup>h<sup>−1</sup>, much improved compared to GCN, which achieved a rate of 0.56 mmolg<sup>−1</sup>h<sup>−1</sup>. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO<sub>2</sub> nanoparticles, resulting in a nanocomposite material comprising TiO<sub>2</sub> and heterojunctions with GCN. After heating and modification the TiO<sub>2</sub> shows a conduction band edge with a more negative potential than the H<sup>+</sup>/H<sub>2</sub> potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis.</p></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"7 \",\"pages\":\"Article 100358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002557/pdfft?md5=6c01beeec28d49825898ca991b16ee44&pid=1-s2.0-S2949822824002557-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822824002557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822824002557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效设计光催化剂是实现实际应用的重要一步。在这项工作中,我们利用原位催化法制备并研究了一种钛酸纳米管(TiNT)/石墨氮化碳纳米复合材料,经过优化后,该复合材料的制氢效率达到了 2.3 mmolg-1h-1,比 GCN 的制氢效率(0.56 mmolg-1h-1)高出很多。我们可以得出结论,尿素热解成氮化碳的过程中,TiNT 也会自我催化分解成锐钛型 TiO2 纳米颗粒,从而产生一种由 TiO2 和与 GCN 的异质结组成的纳米复合材料。经过加热和改性后,TiO2 显示出比 H+/H2 电位更负的导带边缘,再加上 GCN CB 边缘的理想位置,有利于在光照射下产生氢气。这种新方法可被视为改进催化剂合成和设计的通用方法,同时可降低活性催化剂合成的复杂性和能源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-catalysed breakdown of titanate nanotubes by graphitic carbon nitride resulting in enhanced hydrogen production

Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg−1h−1, much improved compared to GCN, which achieved a rate of 0.56 mmolg−1h−1. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO2 nanoparticles, resulting in a nanocomposite material comprising TiO2 and heterojunctions with GCN. After heating and modification the TiO2 shows a conduction band edge with a more negative potential than the H+/H2 potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信