从细胞命运决定的调控到针对患者的治疗,信号通路机理模型的启示

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mareike Simon , Fabian Konrath , Jana Wolf
{"title":"从细胞命运决定的调控到针对患者的治疗,信号通路机理模型的启示","authors":"Mareike Simon ,&nbsp;Fabian Konrath ,&nbsp;Jana Wolf","doi":"10.1016/j.coisb.2024.100533","DOIUrl":null,"url":null,"abstract":"<div><p>Cell fate decisions are tightly regulated by complex signalling networks. Disturbed signalling through these networks is prominent in disease development. To elucidate pathway contributions and effects of alterations to the regulation of proliferation, quiescence, senescence, and apoptosis, computational modelling has been essential. Modelling heterogeneity on different scales was shown to be important for cell fate prediction. In recent years, personalised models capturing signalling and cell fate decisions have been developed. Of special interest is the application of these models to predict the response to drugs. In this review, we highlight examples of mathematical models of signalling pathways that regulate disease-relevant cell fate decisions on the path to develop individualised patient models for optimal treatment prediction.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"39 ","pages":"Article 100533"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000295/pdfft?md5=a7902f0bcf991e2a2e087d02b9cf0b9d&pid=1-s2.0-S2452310024000295-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways\",\"authors\":\"Mareike Simon ,&nbsp;Fabian Konrath ,&nbsp;Jana Wolf\",\"doi\":\"10.1016/j.coisb.2024.100533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cell fate decisions are tightly regulated by complex signalling networks. Disturbed signalling through these networks is prominent in disease development. To elucidate pathway contributions and effects of alterations to the regulation of proliferation, quiescence, senescence, and apoptosis, computational modelling has been essential. Modelling heterogeneity on different scales was shown to be important for cell fate prediction. In recent years, personalised models capturing signalling and cell fate decisions have been developed. Of special interest is the application of these models to predict the response to drugs. In this review, we highlight examples of mathematical models of signalling pathways that regulate disease-relevant cell fate decisions on the path to develop individualised patient models for optimal treatment prediction.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"39 \",\"pages\":\"Article 100533\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452310024000295/pdfft?md5=a7902f0bcf991e2a2e087d02b9cf0b9d&pid=1-s2.0-S2452310024000295-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310024000295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞命运的决定受到复杂信号网络的严格调控。通过这些网络进行的信号传导紊乱在疾病发展中十分突出。要阐明增殖、静止、衰老和凋亡调控途径的贡献和改变的影响,必须进行计算建模。不同尺度的异质性建模对于细胞命运预测非常重要。近年来,捕捉信号和细胞命运决定的个性化模型已经开发出来。这些模型在预测药物反应方面的应用尤其引人关注。在这篇综述中,我们将重点介绍调控与疾病相关的细胞命运决定的信号通路数学模型的实例,这些数学模型正朝着开发用于最佳治疗预测的患者个体化模型的方向发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways

Cell fate decisions are tightly regulated by complex signalling networks. Disturbed signalling through these networks is prominent in disease development. To elucidate pathway contributions and effects of alterations to the regulation of proliferation, quiescence, senescence, and apoptosis, computational modelling has been essential. Modelling heterogeneity on different scales was shown to be important for cell fate prediction. In recent years, personalised models capturing signalling and cell fate decisions have been developed. Of special interest is the application of these models to predict the response to drugs. In this review, we highlight examples of mathematical models of signalling pathways that regulate disease-relevant cell fate decisions on the path to develop individualised patient models for optimal treatment prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信