{"title":"阴影等透镜:朗伯平面和点光源的模型和方法","authors":"Damien Mariyanayagam, Adrien Bartoli","doi":"10.1016/j.cviu.2024.104135","DOIUrl":null,"url":null,"abstract":"<div><p>Structure-from-Motion (SfM) and Shape-from-Shading (SfS) are complementary classical approaches to 3D vision. Broadly speaking, SfM exploits geometric primitives from textured surfaces and SfS exploits pixel intensity from the shading image. We propose an approach that exploits virtual geometric primitives extracted from the shading image, namely the level-sets, which we name shading isophotes. Our approach thus combines the strength of geometric reasoning with the rich shading information. We focus on the case of untextured Lambertian planes of unknown albedo lit by an unknown Point Light Source (PLS) of unknown intensity. We derive a comprehensive geometric model showing that the unknown scene parameters are in general all recoverable from a single image of at least two planes. We propose computational methods to detect the isophotes, to reconstruct the scene parameters in closed-form and to refine the results densely using pixel intensity. Our methods thus estimate light source, plane pose and camera pose parameters for untextured planes, which cannot be achieved by the existing approaches. We evaluate our model and methods on synthetic and real images.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The shading isophotes: Model and methods for Lambertian planes and a point light\",\"authors\":\"Damien Mariyanayagam, Adrien Bartoli\",\"doi\":\"10.1016/j.cviu.2024.104135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structure-from-Motion (SfM) and Shape-from-Shading (SfS) are complementary classical approaches to 3D vision. Broadly speaking, SfM exploits geometric primitives from textured surfaces and SfS exploits pixel intensity from the shading image. We propose an approach that exploits virtual geometric primitives extracted from the shading image, namely the level-sets, which we name shading isophotes. Our approach thus combines the strength of geometric reasoning with the rich shading information. We focus on the case of untextured Lambertian planes of unknown albedo lit by an unknown Point Light Source (PLS) of unknown intensity. We derive a comprehensive geometric model showing that the unknown scene parameters are in general all recoverable from a single image of at least two planes. We propose computational methods to detect the isophotes, to reconstruct the scene parameters in closed-form and to refine the results densely using pixel intensity. Our methods thus estimate light source, plane pose and camera pose parameters for untextured planes, which cannot be achieved by the existing approaches. We evaluate our model and methods on synthetic and real images.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002169\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002169","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The shading isophotes: Model and methods for Lambertian planes and a point light
Structure-from-Motion (SfM) and Shape-from-Shading (SfS) are complementary classical approaches to 3D vision. Broadly speaking, SfM exploits geometric primitives from textured surfaces and SfS exploits pixel intensity from the shading image. We propose an approach that exploits virtual geometric primitives extracted from the shading image, namely the level-sets, which we name shading isophotes. Our approach thus combines the strength of geometric reasoning with the rich shading information. We focus on the case of untextured Lambertian planes of unknown albedo lit by an unknown Point Light Source (PLS) of unknown intensity. We derive a comprehensive geometric model showing that the unknown scene parameters are in general all recoverable from a single image of at least two planes. We propose computational methods to detect the isophotes, to reconstruct the scene parameters in closed-form and to refine the results densely using pixel intensity. Our methods thus estimate light source, plane pose and camera pose parameters for untextured planes, which cannot be achieved by the existing approaches. We evaluate our model and methods on synthetic and real images.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems