探索双向图中的冗余树

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qing Yang, Yingzhi Tian
{"title":"探索双向图中的冗余树","authors":"Qing Yang,&nbsp;Yingzhi Tian","doi":"10.1016/j.amc.2024.129006","DOIUrl":null,"url":null,"abstract":"<div><p>Luo et al. conjectured that for a tree <em>T</em> with bipartition <em>X</em> and <em>Y</em>, if a <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span>, then <em>G</em> has a subtree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> isomorphic to <em>T</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> is <em>k</em>-connected. Although this conjecture has been validated for spiders and caterpillars in cases where <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span>, and also for paths with odd order, its general applicability has remained an open question. In this paper, we establish the validity of this conjecture for <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span> with the girth under of <em>G</em> at least the diameter of <em>G</em> minus one.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring redundant trees in bipartite graphs\",\"authors\":\"Qing Yang,&nbsp;Yingzhi Tian\",\"doi\":\"10.1016/j.amc.2024.129006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Luo et al. conjectured that for a tree <em>T</em> with bipartition <em>X</em> and <em>Y</em>, if a <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span>, then <em>G</em> has a subtree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> isomorphic to <em>T</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> is <em>k</em>-connected. Although this conjecture has been validated for spiders and caterpillars in cases where <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span>, and also for paths with odd order, its general applicability has remained an open question. In this paper, we establish the validity of this conjecture for <span><math><mi>k</mi><mo>≤</mo><mn>3</mn></math></span> with the girth under of <em>G</em> at least the diameter of <em>G</em> minus one.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324004673\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324004673","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

Luo 等人猜想,对于具有双分区 X 和 Y 的树 T,如果一个 k 连接的双分区图 G 的最小度至少为 k+max{|X||,|Y||},那么 G 有一个与 T 同构的子树 TG,这样 G-V(TG)就是 k 连接的。虽然这一猜想已经在 k≤3 的情况下对蜘蛛和毛毛虫以及奇数阶路径进行了验证,但其普遍适用性仍是一个未决问题。在本文中,我们将证明这一猜想在 k≤3 且 G 的周长至少为 G 的直径减一的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring redundant trees in bipartite graphs

Luo et al. conjectured that for a tree T with bipartition X and Y, if a k-connected bipartite graph G with minimum degree at least k+max{|X|,|Y|}, then G has a subtree TG isomorphic to T such that GV(TG) is k-connected. Although this conjecture has been validated for spiders and caterpillars in cases where k3, and also for paths with odd order, its general applicability has remained an open question. In this paper, we establish the validity of this conjecture for k3 with the girth under of G at least the diameter of G minus one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信