{"title":"图的区间边着色中颜色数的上界","authors":"Arsen Hambardzumyan, Levon Muradyan","doi":"10.1016/j.disc.2024.114229","DOIUrl":null,"url":null,"abstract":"<div><p>An edge-coloring of a graph <em>G</em> with colors <span><math><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi></math></span> is called an <em>interval t-coloring</em> if all colors are used and the colors of edges incident to each vertex of <em>G</em> are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph <em>G</em> with at least one edge has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mn>2</mn><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>3</mn></math></span>. In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph <em>G</em> admits an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>11</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. In the same paper Axenovich suggested a conjecture that if a planar graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. In this paper we first prove that if a graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>+</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Next, we confirm Axenovich's conjecture by showing that if a planar graph <em>G</em> admits an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>3</mn><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>4</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We also prove that if an outerplanar graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. Moreover, all these upper bounds are sharp.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114229"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003601/pdfft?md5=2670a9a013dc9c49ade5c7e4ef9faf8f&pid=1-s2.0-S0012365X24003601-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Upper bounds on the number of colors in interval edge-colorings of graphs\",\"authors\":\"Arsen Hambardzumyan, Levon Muradyan\",\"doi\":\"10.1016/j.disc.2024.114229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An edge-coloring of a graph <em>G</em> with colors <span><math><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi></math></span> is called an <em>interval t-coloring</em> if all colors are used and the colors of edges incident to each vertex of <em>G</em> are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph <em>G</em> with at least one edge has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mn>2</mn><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>3</mn></math></span>. In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph <em>G</em> admits an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>11</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. In the same paper Axenovich suggested a conjecture that if a planar graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>. In this paper we first prove that if a graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>+</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. Next, we confirm Axenovich's conjecture by showing that if a planar graph <em>G</em> admits an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mfrac><mrow><mn>3</mn><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>4</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We also prove that if an outerplanar graph <em>G</em> has an interval <em>t</em>-coloring, then <span><math><mi>t</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn></math></span>. Moreover, all these upper bounds are sharp.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114229\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003601/pdfft?md5=2670a9a013dc9c49ade5c7e4ef9faf8f&pid=1-s2.0-S0012365X24003601-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003601\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003601","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果使用了所有颜色,并且 G 的每个顶点所带的边的颜色是不同的,并且构成了一个整数区间,那么具有颜色 1,...t 的图 G 的边着色称为区间 t 着色。1990 年,卡马里安证明,如果至少有一条边的图 G 具有区间 t 着色,则 t≤2|V(G)|-3 。2002 年,阿克森诺维奇改进了平面图的这一上限:如果平面图 G 有一个区间 t-着色,那么 t≤116|V(G)| 。在同一篇文章中,阿克森诺维奇提出了一个猜想:如果一个平面图 G 有一个区间 t-着色,那么 t≤32|V(G)|。在本文中,我们首先证明如果一个图 G 有一个区间 t-着色,那么 t≤|E(G)|+|V(G)|-12 。接着,我们证实了阿克森诺维奇的猜想,即如果一个平面图 G 有一个区间 t-着色,那么 t≤3|V(G)|-42.我们还证明,如果外平面图 G 有一个区间 t-着色,那么 t≤|V(G)|-1.此外,所有这些上界都很尖锐。
Upper bounds on the number of colors in interval edge-colorings of graphs
An edge-coloring of a graph G with colors is called an interval t-coloring if all colors are used and the colors of edges incident to each vertex of G are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph G with at least one edge has an interval t-coloring, then . In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph G admits an interval t-coloring, then . In the same paper Axenovich suggested a conjecture that if a planar graph G has an interval t-coloring, then . In this paper we first prove that if a graph G has an interval t-coloring, then . Next, we confirm Axenovich's conjecture by showing that if a planar graph G admits an interval t-coloring, then . We also prove that if an outerplanar graph G has an interval t-coloring, then . Moreover, all these upper bounds are sharp.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.