基于空间步态特征动态阈值检测的异常下肢姿势识别

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shengrui Zhang, Ling He, Dan Liu, Chuan Jia, Dechao Zhang
{"title":"基于空间步态特征动态阈值检测的异常下肢姿势识别","authors":"Shengrui Zhang,&nbsp;Ling He,&nbsp;Dan Liu,&nbsp;Chuan Jia,&nbsp;Dechao Zhang","doi":"10.1016/j.jksuci.2024.102161","DOIUrl":null,"url":null,"abstract":"<div><p>Lower limb rehabilitation training often involves the use of assistive standing devices. However, elderly individuals frequently experience reduced exercise effectiveness or suffer muscle injuries when utilizing these devices. The ability to recognize abnormal lower limb postures can significantly enhance training efficiency and minimize the risk of injury. To address this, we propose a model based on dynamic threshold detection of spatial gait features to identify such abnormal postures. A human-assisted standing rehabilitation device platform was developed to build a lower limb gait depth dataset. RGB data is employed for keypoint detection, enabling the establishment of a 3D lower limb posture recognition model that extracts gait, time, spatial features, and keypoints. The predicted joint angles, stride length, and step frequency demonstrate errors of 4 %, 8 %, and 1.3 %, respectively, with an average confidence of 0.95 for 3D key points. We employed the WOA-BP neural network to develop a dynamic threshold algorithm based on gait features and propose a model for recognizing abnormal postures. Compared to other models, our model achieves a 96 % accuracy rate in recognizing abnormal postures, with a recall rate of 83 % and an F1 score of 90 %. ROC curve analysis and AUC values reveal that the WOA-BP algorithm performs farthest from the pure chance line, with the highest AUC value of 0.89, indicating its superior performance over other models. Experimental results demonstrate that this model possesses a strong capability in recognizing abnormal lower limb postures, encouraging patients to correct these postures, thereby reducing muscle injuries and improving exercise effectiveness.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102161"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002507/pdfft?md5=27cec39130c542af88b8b1f0132833cd&pid=1-s2.0-S1319157824002507-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Abnormal lower limb posture recognition based on spatial gait feature dynamic threshold detection\",\"authors\":\"Shengrui Zhang,&nbsp;Ling He,&nbsp;Dan Liu,&nbsp;Chuan Jia,&nbsp;Dechao Zhang\",\"doi\":\"10.1016/j.jksuci.2024.102161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lower limb rehabilitation training often involves the use of assistive standing devices. However, elderly individuals frequently experience reduced exercise effectiveness or suffer muscle injuries when utilizing these devices. The ability to recognize abnormal lower limb postures can significantly enhance training efficiency and minimize the risk of injury. To address this, we propose a model based on dynamic threshold detection of spatial gait features to identify such abnormal postures. A human-assisted standing rehabilitation device platform was developed to build a lower limb gait depth dataset. RGB data is employed for keypoint detection, enabling the establishment of a 3D lower limb posture recognition model that extracts gait, time, spatial features, and keypoints. The predicted joint angles, stride length, and step frequency demonstrate errors of 4 %, 8 %, and 1.3 %, respectively, with an average confidence of 0.95 for 3D key points. We employed the WOA-BP neural network to develop a dynamic threshold algorithm based on gait features and propose a model for recognizing abnormal postures. Compared to other models, our model achieves a 96 % accuracy rate in recognizing abnormal postures, with a recall rate of 83 % and an F1 score of 90 %. ROC curve analysis and AUC values reveal that the WOA-BP algorithm performs farthest from the pure chance line, with the highest AUC value of 0.89, indicating its superior performance over other models. Experimental results demonstrate that this model possesses a strong capability in recognizing abnormal lower limb postures, encouraging patients to correct these postures, thereby reducing muscle injuries and improving exercise effectiveness.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 8\",\"pages\":\"Article 102161\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002507/pdfft?md5=27cec39130c542af88b8b1f0132833cd&pid=1-s2.0-S1319157824002507-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002507\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002507","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

下肢康复训练通常需要使用辅助站立装置。然而,老年人在使用这些设备时经常会出现运动效果下降或肌肉受伤的情况。识别异常下肢姿势的能力可显著提高训练效率,并将受伤风险降至最低。为此,我们提出了一种基于空间步态特征动态阈值检测的模型来识别此类异常姿势。我们开发了一个人体辅助站立康复设备平台,以建立下肢步态深度数据集。利用 RGB 数据进行关键点检测,从而建立了一个可提取步态、时间、空间特征和关键点的三维下肢姿势识别模型。预测的关节角度、步长和步频误差分别为 4%、8% 和 1.3%,三维关键点的平均置信度为 0.95。我们利用 WOA-BP 神经网络开发了一种基于步态特征的动态阈值算法,并提出了一种识别异常姿势的模型。与其他模型相比,我们的模型识别异常姿势的准确率达到 96%,召回率为 83%,F1 分数为 90%。ROC 曲线分析和 AUC 值显示,WOA-BP 算法的表现距离纯机会线最远,最高 AUC 值为 0.89,表明其性能优于其他模型。实验结果表明,该模型具有很强的识别异常下肢姿势的能力,可鼓励患者纠正这些姿势,从而减少肌肉损伤,提高锻炼效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal lower limb posture recognition based on spatial gait feature dynamic threshold detection

Lower limb rehabilitation training often involves the use of assistive standing devices. However, elderly individuals frequently experience reduced exercise effectiveness or suffer muscle injuries when utilizing these devices. The ability to recognize abnormal lower limb postures can significantly enhance training efficiency and minimize the risk of injury. To address this, we propose a model based on dynamic threshold detection of spatial gait features to identify such abnormal postures. A human-assisted standing rehabilitation device platform was developed to build a lower limb gait depth dataset. RGB data is employed for keypoint detection, enabling the establishment of a 3D lower limb posture recognition model that extracts gait, time, spatial features, and keypoints. The predicted joint angles, stride length, and step frequency demonstrate errors of 4 %, 8 %, and 1.3 %, respectively, with an average confidence of 0.95 for 3D key points. We employed the WOA-BP neural network to develop a dynamic threshold algorithm based on gait features and propose a model for recognizing abnormal postures. Compared to other models, our model achieves a 96 % accuracy rate in recognizing abnormal postures, with a recall rate of 83 % and an F1 score of 90 %. ROC curve analysis and AUC values reveal that the WOA-BP algorithm performs farthest from the pure chance line, with the highest AUC value of 0.89, indicating its superior performance over other models. Experimental results demonstrate that this model possesses a strong capability in recognizing abnormal lower limb postures, encouraging patients to correct these postures, thereby reducing muscle injuries and improving exercise effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信