双周期射影复数和派生类产生的李代数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiepeng Fang , Yixin Lan , Jie Xiao
{"title":"双周期射影复数和派生类产生的李代数","authors":"Jiepeng Fang ,&nbsp;Yixin Lan ,&nbsp;Jie Xiao","doi":"10.1016/j.aim.2024.109903","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie algebras arising from two-periodic projective complex and derived categories\",\"authors\":\"Jiepeng Fang ,&nbsp;Yixin Lan ,&nbsp;Jie Xiao\",\"doi\":\"10.1016/j.aim.2024.109903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004183\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设 A 是有限全维的有限维 C 代数,A 是有限生成的右 A 模块范畴。通过使用双周期射影复数范畴 C2(P),我们为 A 构造了动机布里奇兰霍尔代数,其中结构常数由 t 中的普恩卡雷多项式给出,然后在 t=-1 处构造了一个 C-Lie 子代数 g=n⊕h,其中 n 由关于不可分解基复数的栈函数构造,h 由可收缩复数构造。对于 C2(P) 的稳定范畴 K2(P),我们构造了它的模空间和一个 C-Lie 代数 g˜=n˜⊕h˜,其中 n˜ 是由支持-不可分解可构造函数构造的,而 h˜ 是由 K2(P) 的格罗thendieck 群构造的。我们证明,自然函子 C2(P)→K2(P)与 A 的格罗内狄克群和 K2(P) 之间的自然同构诱导了一个李代数同构 g≅g˜。这使得布里奇兰在[5]中以 C2(P)的精确结构给出的 t=-1 时的结构常数与[30]中以 K2(P)的三角范畴结构给出的结构常数相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie algebras arising from two-periodic projective complex and derived categories

Let A be a finite-dimensional C-algebra of finite global dimension and A be the category of finitely generated right A-modules. By using of the category of two-periodic projective complexes C2(P), we construct the motivic Bridgeland's Hall algebra for A, where structure constants are given by Poincaré polynomials in t, then construct a C-Lie subalgebra g=nh at t=1, where n is constructed by stack functions about indecomposable radical complexes, and h is by contractible complexes. For the stable category K2(P) of C2(P), we construct its moduli spaces and a C-Lie algebra g˜=n˜h˜, where n˜ is constructed by support-indecomposable constructible functions, and h˜ is by the Grothendieck group of K2(P). We prove that the natural functor C2(P)K2(P) together with the natural isomorphism between Grothendieck groups of A and K2(P) induces a Lie algebra isomorphism gg˜. This makes clear that the structure constants at t=1 provided by Bridgeland in [5] in terms of exact structure of C2(P) precisely equal to that given in [30] in terms of triangulated category structure of K2(P).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信