{"title":"双周期射影复数和派生类产生的李代数","authors":"Jiepeng Fang , Yixin Lan , Jie Xiao","doi":"10.1016/j.aim.2024.109903","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie algebras arising from two-periodic projective complex and derived categories\",\"authors\":\"Jiepeng Fang , Yixin Lan , Jie Xiao\",\"doi\":\"10.1016/j.aim.2024.109903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be a finite-dimensional <span><math><mi>C</mi></math></span>-algebra of finite global dimension and <span><math><mi>A</mi></math></span> be the category of finitely generated right <em>A</em>-modules. By using of the category of two-periodic projective complexes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct the motivic Bridgeland's Hall algebra for <span><math><mi>A</mi></math></span>, where structure constants are given by Poincaré polynomials in <em>t</em>, then construct a <span><math><mi>C</mi></math></span>-Lie subalgebra <span><math><mi>g</mi><mo>=</mo><mi>n</mi><mo>⊕</mo><mi>h</mi></math></span> at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>n</mi></math></span> is constructed by stack functions about indecomposable radical complexes, and <span><math><mi>h</mi></math></span> is by contractible complexes. For the stable category <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>, we construct its moduli spaces and a <span><math><mi>C</mi></math></span>-Lie algebra <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>⊕</mo><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, where <span><math><mover><mrow><mi>n</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is constructed by support-indecomposable constructible functions, and <span><math><mover><mrow><mi>h</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is by the Grothendieck group of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>. We prove that the natural functor <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> together with the natural isomorphism between Grothendieck groups of <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> induces a Lie algebra isomorphism <span><math><mi>g</mi><mo>≅</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. This makes clear that the structure constants at <span><math><mi>t</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> provided by Bridgeland in <span><span>[5]</span></span> in terms of exact structure of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span> precisely equal to that given in <span><span>[30]</span></span> in terms of triangulated category structure of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004183\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设 A 是有限全维的有限维 C 代数,A 是有限生成的右 A 模块范畴。通过使用双周期射影复数范畴 C2(P),我们为 A 构造了动机布里奇兰霍尔代数,其中结构常数由 t 中的普恩卡雷多项式给出,然后在 t=-1 处构造了一个 C-Lie 子代数 g=n⊕h,其中 n 由关于不可分解基复数的栈函数构造,h 由可收缩复数构造。对于 C2(P) 的稳定范畴 K2(P),我们构造了它的模空间和一个 C-Lie 代数 g˜=n˜⊕h˜,其中 n˜ 是由支持-不可分解可构造函数构造的,而 h˜ 是由 K2(P) 的格罗thendieck 群构造的。我们证明,自然函子 C2(P)→K2(P)与 A 的格罗内狄克群和 K2(P) 之间的自然同构诱导了一个李代数同构 g≅g˜。这使得布里奇兰在[5]中以 C2(P)的精确结构给出的 t=-1 时的结构常数与[30]中以 K2(P)的三角范畴结构给出的结构常数相等。
Lie algebras arising from two-periodic projective complex and derived categories
Let A be a finite-dimensional -algebra of finite global dimension and be the category of finitely generated right A-modules. By using of the category of two-periodic projective complexes , we construct the motivic Bridgeland's Hall algebra for , where structure constants are given by Poincaré polynomials in t, then construct a -Lie subalgebra at , where is constructed by stack functions about indecomposable radical complexes, and is by contractible complexes. For the stable category of , we construct its moduli spaces and a -Lie algebra , where is constructed by support-indecomposable constructible functions, and is by the Grothendieck group of . We prove that the natural functor together with the natural isomorphism between Grothendieck groups of and induces a Lie algebra isomorphism . This makes clear that the structure constants at provided by Bridgeland in [5] in terms of exact structure of precisely equal to that given in [30] in terms of triangulated category structure of .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.