{"title":"一般不定 Sturm-Liouville 问题的最低正 Neumann-Dirichlet 特征值最小化","authors":"Haiyan Zhang , Jijun Ao","doi":"10.1016/j.jde.2024.08.038","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>N</mi><mi>D</mi><mo>+</mo></mrow></msubsup></math></span> for the general Sturm–Liouville problem<span><span><span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>λ</mi><mi>m</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>,</mo></math></span></span></span> with the Neumann-Dirichlet boundary conditions, where <em>q</em> is a nonnegative potential and another potential <em>m</em> admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimization of the lowest positive Neumann-Dirichlet eigenvalue for general indefinite Sturm-Liouville problems\",\"authors\":\"Haiyan Zhang , Jijun Ao\",\"doi\":\"10.1016/j.jde.2024.08.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>N</mi><mi>D</mi><mo>+</mo></mrow></msubsup></math></span> for the general Sturm–Liouville problem<span><span><span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>λ</mi><mi>m</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>,</mo></math></span></span></span> with the Neumann-Dirichlet boundary conditions, where <em>q</em> is a nonnegative potential and another potential <em>m</em> admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005205\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimization of the lowest positive Neumann-Dirichlet eigenvalue for general indefinite Sturm-Liouville problems
The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue for the general Sturm–Liouville problem with the Neumann-Dirichlet boundary conditions, where q is a nonnegative potential and another potential m admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics