一般不定 Sturm-Liouville 问题的最低正 Neumann-Dirichlet 特征值最小化

IF 2.4 2区 数学 Q1 MATHEMATICS
Haiyan Zhang , Jijun Ao
{"title":"一般不定 Sturm-Liouville 问题的最低正 Neumann-Dirichlet 特征值最小化","authors":"Haiyan Zhang ,&nbsp;Jijun Ao","doi":"10.1016/j.jde.2024.08.038","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>N</mi><mi>D</mi><mo>+</mo></mrow></msubsup></math></span> for the general Sturm–Liouville problem<span><span><span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>λ</mi><mi>m</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>,</mo></math></span></span></span> with the Neumann-Dirichlet boundary conditions, where <em>q</em> is a nonnegative potential and another potential <em>m</em> admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimization of the lowest positive Neumann-Dirichlet eigenvalue for general indefinite Sturm-Liouville problems\",\"authors\":\"Haiyan Zhang ,&nbsp;Jijun Ao\",\"doi\":\"10.1016/j.jde.2024.08.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>N</mi><mi>D</mi><mo>+</mo></mrow></msubsup></math></span> for the general Sturm–Liouville problem<span><span><span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>λ</mi><mi>m</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>,</mo></math></span></span></span> with the Neumann-Dirichlet boundary conditions, where <em>q</em> is a nonnegative potential and another potential <em>m</em> admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005205\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是获得一般 Sturm-Liouville 问题y″=q(t)y+λm(t)y 的最小正特征值 λ0ND+ 的尖锐估计值,该问题具有 Neumann-Dirichlet 边界条件,其中 q 是一个非负势,另一个势 m 允许改变符号。首先,我们将研究度量微分方程中最小正特征值的最优下界,以使我们的结果更加适用。其次,基于 ODE 的最小正特征值最小化问题与 MDE 的最小正特征值最小化问题之间的关系,我们找到了一般 Sturm-Liouville 方程的最小正特征值的显式最优下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimization of the lowest positive Neumann-Dirichlet eigenvalue for general indefinite Sturm-Liouville problems

The aim of this paper is to obtain the sharp estimate for the lowest positive eigenvalue λ0ND+ for the general Sturm–Liouville problemy=q(t)y+λm(t)y, with the Neumann-Dirichlet boundary conditions, where q is a nonnegative potential and another potential m admits to change sign. First, we will study the optimal lower bound for the smallest positive eigenvalue in the measure differential equations to make our results more applicable. Second, based on the relationship between the minimization problem of the smallest positive eigenvalue for the ODE and the one for the MDE, we find the explicit optimal lower bound of the smallest positive eigenvalue for the general Sturm–Liouville equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信