随机延迟多链路复杂网络的非周期性间歇动态事件触发同步控制

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"随机延迟多链路复杂网络的非周期性间歇动态事件触发同步控制","authors":"","doi":"10.1016/j.neunet.2024.106658","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the exponential synchronization issue of stochastic complex networks with time delays and time-varying multi-links (SCNTM) is discussed via a novel aperiodic intermittent dynamic event-triggered control (AIDE-TC). The AIDE-TC is designed by combining intermittent control with an exponential function and dynamic event-triggered control, aiming to minimize the number of the required triggers. Then, based on the proposed control strategy, the sufficient conditions for exponential synchronization in mean square of SCNTM are obtained by adopting graph theoretic approach and Lyapunov function method. In the meanwhile, it is proven that the Zeno behavior can be excluded under the AIDE-TC, which ensures the feasibility of the control mechanism to realize the synchronization of SCNTM. Finally, we provide a numerical simulation on islanded microgrid systems to validate the effectiveness of main results and the simulation comparison results show that the AIDE-TC can reduce the number of event triggers.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aperiodic intermittent dynamic event-triggered synchronization control for stochastic delayed multi-links complex networks\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the exponential synchronization issue of stochastic complex networks with time delays and time-varying multi-links (SCNTM) is discussed via a novel aperiodic intermittent dynamic event-triggered control (AIDE-TC). The AIDE-TC is designed by combining intermittent control with an exponential function and dynamic event-triggered control, aiming to minimize the number of the required triggers. Then, based on the proposed control strategy, the sufficient conditions for exponential synchronization in mean square of SCNTM are obtained by adopting graph theoretic approach and Lyapunov function method. In the meanwhile, it is proven that the Zeno behavior can be excluded under the AIDE-TC, which ensures the feasibility of the control mechanism to realize the synchronization of SCNTM. Finally, we provide a numerical simulation on islanded microgrid systems to validate the effectiveness of main results and the simulation comparison results show that the AIDE-TC can reduce the number of event triggers.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024005823\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005823","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一种新颖的非周期性间歇动态事件触发控制(AIDE-TC)讨论了具有时间延迟和时变多链路(SCNTM)的随机复杂网络的指数同步问题。AIDE-TC 结合了指数函数间歇控制和动态事件触发控制,旨在最大限度地减少所需的触发器数量。然后,基于所提出的控制策略,采用图论方法和 Lyapunov 函数方法得到了 SCNTM 均方根指数同步的充分条件。同时,证明了在 AIDE-TC 下可以排除 Zeno 行为,从而确保了控制机制实现 SCNTM 同步的可行性。最后,我们对孤岛微电网系统进行了数值仿真,以验证主要结果的有效性,仿真对比结果表明,AIDE-TC 可以减少事件触发次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aperiodic intermittent dynamic event-triggered synchronization control for stochastic delayed multi-links complex networks

In this work, the exponential synchronization issue of stochastic complex networks with time delays and time-varying multi-links (SCNTM) is discussed via a novel aperiodic intermittent dynamic event-triggered control (AIDE-TC). The AIDE-TC is designed by combining intermittent control with an exponential function and dynamic event-triggered control, aiming to minimize the number of the required triggers. Then, based on the proposed control strategy, the sufficient conditions for exponential synchronization in mean square of SCNTM are obtained by adopting graph theoretic approach and Lyapunov function method. In the meanwhile, it is proven that the Zeno behavior can be excluded under the AIDE-TC, which ensures the feasibility of the control mechanism to realize the synchronization of SCNTM. Finally, we provide a numerical simulation on islanded microgrid systems to validate the effectiveness of main results and the simulation comparison results show that the AIDE-TC can reduce the number of event triggers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信