学习具有异质连接性的脑功能网络,用于脑疾病识别

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"学习具有异质连接性的脑功能网络,用于脑疾病识别","authors":"","doi":"10.1016/j.neunet.2024.106660","DOIUrl":null,"url":null,"abstract":"<div><p>Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning functional brain networks with heterogeneous connectivities for brain disease identification\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024005847\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005847","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

脑功能网络(FBN)用于描述不同脑区之间的相互作用,已被广泛用于识别神经和精神疾病的潜在生物标志物。使用现有方法估算出的 FBN 往往是同质的,这表明不同的脑区表现出相同类型的相关性。这种同质性限制了我们准确编码大脑内部复杂相互作用的能力。因此,据我们所知,在本研究中,我们首次提出了异质 FBN 的存在,并引入了一种新的 FBN 估计模型,该模型能自适应地将异质连接分配给不同的脑区对,从而有效地编码大脑中复杂的交互模式。具体来说,我们首先从不同视图或基于不同方法构建多种类型的候选相关性,然后开发一种改进的正交匹配追寻算法,在标签信息的指导下为每对脑区选择最多一种相关性。然后,这些自适应估计的异质 FBN 被用于区分神经/精神疾病受试者与健康对照组,并识别与这些疾病相关的潜在生物标记物。在真实数据集上的实验结果表明,与基线方法相比,所提出的方案在两个地点的分类性能分别提高了 7.07% 和 7.58%。这强调了异质性假设的合理性和异质性连接分配算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning functional brain networks with heterogeneous connectivities for brain disease identification

Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信