用于多视角多体姿态估计的深度 NRSFM

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Áron Fóthi, Joul Skaf, Fengjiao Lu, Kristian Fenech
{"title":"用于多视角多体姿态估计的深度 NRSFM","authors":"Áron Fóthi,&nbsp;Joul Skaf,&nbsp;Fengjiao Lu,&nbsp;Kristian Fenech","doi":"10.1016/j.patrec.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the challenging task of unsupervised relative human pose estimation. Our solution exploits the potential offered by utilizing multiple uncalibrated cameras. It is assumed that spatial human pose and camera parameter estimation can be solved as a block sparse dictionary learning problem with zero supervision. The resulting structures and camera parameters can fit individual skeletons into a common space. To do so, we exploit the fact that all individuals in the image are viewed from the same camera viewpoint, thus exploiting the information provided by multiple camera views and overcoming the lack of information on camera parameters. To the best of our knowledge, this is the first solution that requires neither 3D ground truth nor knowledge of the intrinsic or extrinsic camera parameters. Our approach demonstrates the potential of using multiple viewpoints to solve challenging computer vision problems. Additionally, we provide access to the code, encouraging further development and experimentation. <span><span>https://github.com/Jeryoss/MVMB-NRSFM</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 218-224"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167865524002472/pdfft?md5=c7f415f86c9c99693c29d66ef080962f&pid=1-s2.0-S0167865524002472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep NRSFM for multi-view multi-body pose estimation\",\"authors\":\"Áron Fóthi,&nbsp;Joul Skaf,&nbsp;Fengjiao Lu,&nbsp;Kristian Fenech\",\"doi\":\"10.1016/j.patrec.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the challenging task of unsupervised relative human pose estimation. Our solution exploits the potential offered by utilizing multiple uncalibrated cameras. It is assumed that spatial human pose and camera parameter estimation can be solved as a block sparse dictionary learning problem with zero supervision. The resulting structures and camera parameters can fit individual skeletons into a common space. To do so, we exploit the fact that all individuals in the image are viewed from the same camera viewpoint, thus exploiting the information provided by multiple camera views and overcoming the lack of information on camera parameters. To the best of our knowledge, this is the first solution that requires neither 3D ground truth nor knowledge of the intrinsic or extrinsic camera parameters. Our approach demonstrates the potential of using multiple viewpoints to solve challenging computer vision problems. Additionally, we provide access to the code, encouraging further development and experimentation. <span><span>https://github.com/Jeryoss/MVMB-NRSFM</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 218-224\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002472/pdfft?md5=c7f415f86c9c99693c29d66ef080962f&pid=1-s2.0-S0167865524002472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002472\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002472","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了无监督相对人体姿态估计这一具有挑战性的任务。我们的解决方案利用了多台未校准摄像机的潜力。假设空间人体姿态和摄像机参数估计可以作为零监督的块稀疏字典学习问题来解决。由此产生的结构和摄像机参数可将单个骨架拟合到一个共同的空间中。为此,我们利用了图像中的所有个体都从同一摄像机视角观看这一事实,从而利用了多个摄像机视角提供的信息,克服了摄像机参数信息缺乏的问题。据我们所知,这是第一个既不需要三维地面实况,也不需要内在或外在相机参数知识的解决方案。我们的方法展示了使用多视角解决具有挑战性的计算机视觉问题的潜力。此外,我们还提供了代码访问权限,鼓励进一步开发和实验。https://github.com/Jeryoss/MVMB-NRSFM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep NRSFM for multi-view multi-body pose estimation

This paper addresses the challenging task of unsupervised relative human pose estimation. Our solution exploits the potential offered by utilizing multiple uncalibrated cameras. It is assumed that spatial human pose and camera parameter estimation can be solved as a block sparse dictionary learning problem with zero supervision. The resulting structures and camera parameters can fit individual skeletons into a common space. To do so, we exploit the fact that all individuals in the image are viewed from the same camera viewpoint, thus exploiting the information provided by multiple camera views and overcoming the lack of information on camera parameters. To the best of our knowledge, this is the first solution that requires neither 3D ground truth nor knowledge of the intrinsic or extrinsic camera parameters. Our approach demonstrates the potential of using multiple viewpoints to solve challenging computer vision problems. Additionally, we provide access to the code, encouraging further development and experimentation. https://github.com/Jeryoss/MVMB-NRSFM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信