2007 - 为 p53 缺陷血癌的治疗方法提供信息

IF 2.5 4区 医学 Q2 HEMATOLOGY
Gemma Kelly , Sarah Diepstraten , Yin Yuan , John (Eddie) La Marca , Savannah Young , Catherine Chang , Lauren Whelan , Aisling Ross , Karla Fischer , Giovanna Pomilio , Rhiannon Morris , Angela Georgiou , Veronique Litalien , Fiona Brown , Andrew Roberts , Andreas Strasser , Andrew Wei
{"title":"2007 - 为 p53 缺陷血癌的治疗方法提供信息","authors":"Gemma Kelly ,&nbsp;Sarah Diepstraten ,&nbsp;Yin Yuan ,&nbsp;John (Eddie) La Marca ,&nbsp;Savannah Young ,&nbsp;Catherine Chang ,&nbsp;Lauren Whelan ,&nbsp;Aisling Ross ,&nbsp;Karla Fischer ,&nbsp;Giovanna Pomilio ,&nbsp;Rhiannon Morris ,&nbsp;Angela Georgiou ,&nbsp;Veronique Litalien ,&nbsp;Fiona Brown ,&nbsp;Andrew Roberts ,&nbsp;Andreas Strasser ,&nbsp;Andrew Wei","doi":"10.1016/j.exphem.2024.104564","DOIUrl":null,"url":null,"abstract":"<div><p>Mutations in the tumour suppressor TP53 are common in many cancers, including aggressive blood cancers, and confer poor responses to chemotherapy. Newer BH3-mimetic drugs, such as the BCL-2 inhibitor Venetoclax, were postulated to be effective therapy for TP53 mutant blood cancers since these drugs initiate apoptosis downstream of TP53 and therefore should function agnostic of TP53 status. However recent data from our lab and others indicate wild-type TP53 is required for maximal cancer cell killing by BH3-mimetic drugs.</p><p>Using pre-clinical models of several blood cancers and CRISPR/Cas9 approaches, we interrogated the role of TP53 in the apoptotic response to BH3-mimetic drugs. We found that TP53 is not needed for BH3-mimetics to induce apoptosis via mitochondrial outer membrane permeabilization (MOMP). However, TP53 becomes activated downstream of MOMP, leading to induction of the pro-apoptotic BH3-only proteins and a second wave of apoptosis that reinforces killing of the cancer cells. Blood cancers with mutant TP53 cannot induce this enforcing wave of apoptosis and are therefore more likely to survive and contribute to relapse.</p><p>Through these analyses we identified an alternative complementary pathway to activate apoptosis using STING agonist drugs. We found that STING agonists could induce BH3-only protein expression in a TP53-independent manner, boosting the pro-apoptotic signal. Combining STING agonists with BH3-mimetic drugs led to highly effective killing of mouse B cell lymphomas, human NK/T cell lymphomas and patient-derived Acute Myeloid Leukemia blasts, even those that were mutated for TP53. Since STING agonists are already in clinical trials to induce anti-tumour immunity, we anticipate repurposing them to boost apoptosis alongside BH3-mimetic drugs in clinical trials for blood cancer patients would be effective and relatively straight forward.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"137 ","pages":"Article 104564"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X24004235/pdfft?md5=b3b4f58f4ac1812f14df07970f268378&pid=1-s2.0-S0301472X24004235-main.pdf","citationCount":"0","resultStr":"{\"title\":\"2007 – INFORMING THERAPEUTIC APPROACHES FOR P53 DEFECTIVE BLOOD CANCERS\",\"authors\":\"Gemma Kelly ,&nbsp;Sarah Diepstraten ,&nbsp;Yin Yuan ,&nbsp;John (Eddie) La Marca ,&nbsp;Savannah Young ,&nbsp;Catherine Chang ,&nbsp;Lauren Whelan ,&nbsp;Aisling Ross ,&nbsp;Karla Fischer ,&nbsp;Giovanna Pomilio ,&nbsp;Rhiannon Morris ,&nbsp;Angela Georgiou ,&nbsp;Veronique Litalien ,&nbsp;Fiona Brown ,&nbsp;Andrew Roberts ,&nbsp;Andreas Strasser ,&nbsp;Andrew Wei\",\"doi\":\"10.1016/j.exphem.2024.104564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mutations in the tumour suppressor TP53 are common in many cancers, including aggressive blood cancers, and confer poor responses to chemotherapy. Newer BH3-mimetic drugs, such as the BCL-2 inhibitor Venetoclax, were postulated to be effective therapy for TP53 mutant blood cancers since these drugs initiate apoptosis downstream of TP53 and therefore should function agnostic of TP53 status. However recent data from our lab and others indicate wild-type TP53 is required for maximal cancer cell killing by BH3-mimetic drugs.</p><p>Using pre-clinical models of several blood cancers and CRISPR/Cas9 approaches, we interrogated the role of TP53 in the apoptotic response to BH3-mimetic drugs. We found that TP53 is not needed for BH3-mimetics to induce apoptosis via mitochondrial outer membrane permeabilization (MOMP). However, TP53 becomes activated downstream of MOMP, leading to induction of the pro-apoptotic BH3-only proteins and a second wave of apoptosis that reinforces killing of the cancer cells. Blood cancers with mutant TP53 cannot induce this enforcing wave of apoptosis and are therefore more likely to survive and contribute to relapse.</p><p>Through these analyses we identified an alternative complementary pathway to activate apoptosis using STING agonist drugs. We found that STING agonists could induce BH3-only protein expression in a TP53-independent manner, boosting the pro-apoptotic signal. Combining STING agonists with BH3-mimetic drugs led to highly effective killing of mouse B cell lymphomas, human NK/T cell lymphomas and patient-derived Acute Myeloid Leukemia blasts, even those that were mutated for TP53. Since STING agonists are already in clinical trials to induce anti-tumour immunity, we anticipate repurposing them to boost apoptosis alongside BH3-mimetic drugs in clinical trials for blood cancer patients would be effective and relatively straight forward.</p></div>\",\"PeriodicalId\":12202,\"journal\":{\"name\":\"Experimental hematology\",\"volume\":\"137 \",\"pages\":\"Article 104564\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301472X24004235/pdfft?md5=b3b4f58f4ac1812f14df07970f268378&pid=1-s2.0-S0301472X24004235-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301472X24004235\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301472X24004235","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多癌症(包括侵袭性血癌)中都常见肿瘤抑制因子 TP53 发生突变,而且对化疗反应不佳。较新的BH3模拟药物,如BCL-2抑制剂Venetoclax,被认为是治疗TP53突变血癌的有效药物,因为这些药物在TP53下游启动细胞凋亡,因此其作用与TP53状态无关。利用几种血癌的临床前模型和CRISPR/Cas9方法,我们研究了TP53在BH3模拟药物的凋亡反应中的作用。我们发现,BH3-模拟物通过线粒体外膜通透性(MOMP)诱导细胞凋亡并不需要TP53。然而,TP53 会在 MOMP 的下游被激活,从而诱导促凋亡的纯 BH3 蛋白和第二波凋亡,加强对癌细胞的杀伤。TP53突变的血癌无法诱导这种强制的细胞凋亡,因此更有可能存活下来并导致复发。我们发现,STING 激动剂能以不依赖于 TP53 的方式诱导纯 BH3 蛋白表达,从而增强促凋亡信号。将 STING 激动剂与 BH3 拟态药物结合使用,可高效杀死小鼠 B 细胞淋巴瘤、人类 NK/T 细胞淋巴瘤和源自患者的急性髓性白血病血块,甚至包括 TP53 突变的血块。由于 STING 激动剂已在临床试验中用于诱导抗肿瘤免疫,我们预计,在针对血癌患者的临床试验中,将 STING 激动剂与 BH3 拟态药物一起用于促进细胞凋亡将是有效且相对简单的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2007 – INFORMING THERAPEUTIC APPROACHES FOR P53 DEFECTIVE BLOOD CANCERS

Mutations in the tumour suppressor TP53 are common in many cancers, including aggressive blood cancers, and confer poor responses to chemotherapy. Newer BH3-mimetic drugs, such as the BCL-2 inhibitor Venetoclax, were postulated to be effective therapy for TP53 mutant blood cancers since these drugs initiate apoptosis downstream of TP53 and therefore should function agnostic of TP53 status. However recent data from our lab and others indicate wild-type TP53 is required for maximal cancer cell killing by BH3-mimetic drugs.

Using pre-clinical models of several blood cancers and CRISPR/Cas9 approaches, we interrogated the role of TP53 in the apoptotic response to BH3-mimetic drugs. We found that TP53 is not needed for BH3-mimetics to induce apoptosis via mitochondrial outer membrane permeabilization (MOMP). However, TP53 becomes activated downstream of MOMP, leading to induction of the pro-apoptotic BH3-only proteins and a second wave of apoptosis that reinforces killing of the cancer cells. Blood cancers with mutant TP53 cannot induce this enforcing wave of apoptosis and are therefore more likely to survive and contribute to relapse.

Through these analyses we identified an alternative complementary pathway to activate apoptosis using STING agonist drugs. We found that STING agonists could induce BH3-only protein expression in a TP53-independent manner, boosting the pro-apoptotic signal. Combining STING agonists with BH3-mimetic drugs led to highly effective killing of mouse B cell lymphomas, human NK/T cell lymphomas and patient-derived Acute Myeloid Leukemia blasts, even those that were mutated for TP53. Since STING agonists are already in clinical trials to induce anti-tumour immunity, we anticipate repurposing them to boost apoptosis alongside BH3-mimetic drugs in clinical trials for blood cancer patients would be effective and relatively straight forward.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental hematology
Experimental hematology 医学-血液学
CiteScore
5.30
自引率
0.00%
发文量
84
审稿时长
58 days
期刊介绍: Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信