{"title":"流体或固体中广义 (2+1) 维非线性波方程的调制不稳定性、分岔和混沌行为","authors":"","doi":"10.1016/j.aml.2024.109287","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a generalized (2+1)-dimensional nonlinear wave equation characterizing nonlinear waves in a fluid or solid. We use the Painlevé analysis to test the integrability of that equation. In order to research the modulation instability (MI) of that equation, we obtain the one-soliton solutions of that equation through the Hirota bilinear method. The propagation velocity formula and characteristic line of the one soliton are derived. Then, we perform the MI to that equation through the standard linear stability. We study the distribution of the MI gain under the parameters <span><math><mi>K</mi></math></span>, <span><math><mi>Ω</mi></math></span> and <span><math><mi>R</mi></math></span>, which are the perturbation wave numbers in <span><math><mi>x</mi></math></span>, <span><math><mi>t</mi></math></span> directions and the initial amplitude, respectively. We find that the amplitude, bandwidth and distance to the line <span><math><mrow><mi>Ω</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>R</mi><mo>=</mo><mn>0</mn></mrow></math></span> of the MI gain vary as the <span><math><mi>K</mi></math></span> or <span><math><mi>R</mi></math></span> value changes. Finally, we analyze the bifurcation behavior of the system using direction field maps and investigate its chaotic behavior under the influence of a periodic external force using phase portraits.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation instability, bifurcation and chaotic behaviors for a generalized (2+1)-dimensional nonlinear wave equation in a fluid or solid\",\"authors\":\"\",\"doi\":\"10.1016/j.aml.2024.109287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate a generalized (2+1)-dimensional nonlinear wave equation characterizing nonlinear waves in a fluid or solid. We use the Painlevé analysis to test the integrability of that equation. In order to research the modulation instability (MI) of that equation, we obtain the one-soliton solutions of that equation through the Hirota bilinear method. The propagation velocity formula and characteristic line of the one soliton are derived. Then, we perform the MI to that equation through the standard linear stability. We study the distribution of the MI gain under the parameters <span><math><mi>K</mi></math></span>, <span><math><mi>Ω</mi></math></span> and <span><math><mi>R</mi></math></span>, which are the perturbation wave numbers in <span><math><mi>x</mi></math></span>, <span><math><mi>t</mi></math></span> directions and the initial amplitude, respectively. We find that the amplitude, bandwidth and distance to the line <span><math><mrow><mi>Ω</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>R</mi><mo>=</mo><mn>0</mn></mrow></math></span> of the MI gain vary as the <span><math><mi>K</mi></math></span> or <span><math><mi>R</mi></math></span> value changes. Finally, we analyze the bifurcation behavior of the system using direction field maps and investigate its chaotic behavior under the influence of a periodic external force using phase portraits.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了一个广义 (2+1) 维非线性波方程,该方程描述了流体或固体中非线性波的特征。我们使用 Painlevé 分析法来检验该方程的可积分性。为了研究该方程的调制不稳定性(MI),我们通过 Hirota 双线性方法获得了该方程的单孑子解。得出了单孤子的传播速度公式和特征线。然后,我们通过标准线性稳定性对该方程进行 MI。我们研究了在参数 K、Ω 和 R(分别为 x、t 方向的扰动波数和初始振幅)作用下 MI 增益的分布。我们发现,MI 增益的振幅、带宽和与线 Ω=0 或 R=0 的距离会随着 K 值或 R 值的变化而变化。最后,我们利用方向场图分析了系统的分岔行为,并利用相位肖像研究了系统在周期性外力影响下的混沌行为。
Modulation instability, bifurcation and chaotic behaviors for a generalized (2+1)-dimensional nonlinear wave equation in a fluid or solid
In this paper, we investigate a generalized (2+1)-dimensional nonlinear wave equation characterizing nonlinear waves in a fluid or solid. We use the Painlevé analysis to test the integrability of that equation. In order to research the modulation instability (MI) of that equation, we obtain the one-soliton solutions of that equation through the Hirota bilinear method. The propagation velocity formula and characteristic line of the one soliton are derived. Then, we perform the MI to that equation through the standard linear stability. We study the distribution of the MI gain under the parameters , and , which are the perturbation wave numbers in , directions and the initial amplitude, respectively. We find that the amplitude, bandwidth and distance to the line or of the MI gain vary as the or value changes. Finally, we analyze the bifurcation behavior of the system using direction field maps and investigate its chaotic behavior under the influence of a periodic external force using phase portraits.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.