{"title":"不稳定姿态期间姿势波动与头皮脑电图之间相位-振幅耦合的拓扑组织与年龄有关。","authors":"Yi-Ching Chen;Yi-Ying Tsai;Wei-Min Huang;Chen-Guang Zhao;Ing-Shiou Hwang","doi":"10.1109/TNSRE.2024.3451023","DOIUrl":null,"url":null,"abstract":"Through phase-amplitude analysis, this study investigated how low-frequency postural fluctuations interact with high-frequency scalp electroencephalography (EEG) amplitudes, shedding light on age-related mechanic differences in balance control during uneven surface navigation. Twenty young (\n<inline-formula> <tex-math>$24.1~\\pm ~1.9$ </tex-math></inline-formula>\n years) and twenty older adults (\n<inline-formula> <tex-math>$66.2~\\pm ~2.7$ </tex-math></inline-formula>\n years) stood on a training stabilometer with visual guidance, while their scalp EEG and stabilometer plate movements were monitored. In addition to analyzing the dynamics of the postural fluctuation phase, phase-amplitude coupling (PAC) for postural fluctuations below 2 Hz and within EEG sub-bands (theta: 4-7 Hz, alpha: 8-12 Hz, beta: 13-35 Hz) was calculated. The results indicated that older adults exhibited significantly larger postural fluctuation amplitudes(p <0.001)> <tex-math>${p} =0.005$ </tex-math></inline-formula>\n) than young adults. The PAC between postural fluctuation and theta EEG (FCz and bilateral temporal-parietal-occipital area), as well as that between postural fluctuation and alpha EEG oscillation, was lower in older adults than in young adults (p <0.05).> <tex-math>${p}=0.006$ </tex-math></inline-formula>\n), was higher in older adults than in young adults. In summary, the postural fluctuation phase and phase-amplitude coupling between postural fluctuation and EEG are sensitive indicators of the age-related decline in postural adjustments, reflecting less flexible motor state transitions and adaptive changes in error monitoring and visuospatial attention.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"32 ","pages":"3231-3239"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654378","citationCount":"0","resultStr":"{\"title\":\"Age-Related Topological Organization of Phase-Amplitude Coupling Between Postural Fluctuations and Scalp EEG During Unsteady Stance\",\"authors\":\"Yi-Ching Chen;Yi-Ying Tsai;Wei-Min Huang;Chen-Guang Zhao;Ing-Shiou Hwang\",\"doi\":\"10.1109/TNSRE.2024.3451023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through phase-amplitude analysis, this study investigated how low-frequency postural fluctuations interact with high-frequency scalp electroencephalography (EEG) amplitudes, shedding light on age-related mechanic differences in balance control during uneven surface navigation. Twenty young (\\n<inline-formula> <tex-math>$24.1~\\\\pm ~1.9$ </tex-math></inline-formula>\\n years) and twenty older adults (\\n<inline-formula> <tex-math>$66.2~\\\\pm ~2.7$ </tex-math></inline-formula>\\n years) stood on a training stabilometer with visual guidance, while their scalp EEG and stabilometer plate movements were monitored. In addition to analyzing the dynamics of the postural fluctuation phase, phase-amplitude coupling (PAC) for postural fluctuations below 2 Hz and within EEG sub-bands (theta: 4-7 Hz, alpha: 8-12 Hz, beta: 13-35 Hz) was calculated. The results indicated that older adults exhibited significantly larger postural fluctuation amplitudes(p <0.001)> <tex-math>${p} =0.005$ </tex-math></inline-formula>\\n) than young adults. The PAC between postural fluctuation and theta EEG (FCz and bilateral temporal-parietal-occipital area), as well as that between postural fluctuation and alpha EEG oscillation, was lower in older adults than in young adults (p <0.05).> <tex-math>${p}=0.006$ </tex-math></inline-formula>\\n), was higher in older adults than in young adults. In summary, the postural fluctuation phase and phase-amplitude coupling between postural fluctuation and EEG are sensitive indicators of the age-related decline in postural adjustments, reflecting less flexible motor state transitions and adaptive changes in error monitoring and visuospatial attention.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"32 \",\"pages\":\"3231-3239\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10654378\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654378/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654378/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Age-Related Topological Organization of Phase-Amplitude Coupling Between Postural Fluctuations and Scalp EEG During Unsteady Stance
Through phase-amplitude analysis, this study investigated how low-frequency postural fluctuations interact with high-frequency scalp electroencephalography (EEG) amplitudes, shedding light on age-related mechanic differences in balance control during uneven surface navigation. Twenty young (
$24.1~\pm ~1.9$
years) and twenty older adults (
$66.2~\pm ~2.7$
years) stood on a training stabilometer with visual guidance, while their scalp EEG and stabilometer plate movements were monitored. In addition to analyzing the dynamics of the postural fluctuation phase, phase-amplitude coupling (PAC) for postural fluctuations below 2 Hz and within EEG sub-bands (theta: 4-7 Hz, alpha: 8-12 Hz, beta: 13-35 Hz) was calculated. The results indicated that older adults exhibited significantly larger postural fluctuation amplitudes(p <0.001)> ${p} =0.005$
) than young adults. The PAC between postural fluctuation and theta EEG (FCz and bilateral temporal-parietal-occipital area), as well as that between postural fluctuation and alpha EEG oscillation, was lower in older adults than in young adults (p <0.05).> ${p}=0.006$
), was higher in older adults than in young adults. In summary, the postural fluctuation phase and phase-amplitude coupling between postural fluctuation and EEG are sensitive indicators of the age-related decline in postural adjustments, reflecting less flexible motor state transitions and adaptive changes in error monitoring and visuospatial attention.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.