Robert D Melara, James C Root, Jay A Edelman, Maria Camilla Estelle, Isabella Mohr, Tim A Ahles
{"title":"乳腺癌治疗对神经噪音的影响:纵向设计。","authors":"Robert D Melara, James C Root, Jay A Edelman, Maria Camilla Estelle, Isabella Mohr, Tim A Ahles","doi":"10.1093/arclin/acae066","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cognitive dysfunction has been observed consistently in a subset of breast cancer survivors. Yet the precise neurophysiological origins of cancer-related cognitive decline remain unknown. The current study assessed neural noise (1/f activity in electroencephalogram [EEG]) in breast cancer survivors as a potential contributor to observed cognitive dysfunction from pre- to post-treatment.</p><p><strong>Methods: </strong>We measured EEG in a longitudinal design during performance of the paired-click task and the revised Attention Network Test (ANT-R) to investigate pre- versus post-treatment effects of neural noise in breast cancer patients (n = 20 in paired click; n = 19 in ANT-R) compared with healthy controls (n = 32 in paired click; n = 29 in ANT-R).</p><p><strong>Results: </strong>In both paradigms, one sensory (paired click) and one cognitive (ANT-R), we found that neural noise was significantly elevated after treatment in patients, remaining constant from pretest to posttest in controls. In the ANT-R, patients responded more slowly than controls on invalid cuing trials. Increased neural noise was associated with poorer alerting and poorer inhibitory control of attention (as measured by behavioral network scores), particularly for patients after treatment.</p><p><strong>Conclusions: </strong>The current study is the first to show a deleterious effect of breast cancer and/or cancer treatment on neural noise, pointing to alterations in the relative balance of excitatory and inhibitory synaptic inputs, while also suggesting promising approaches for cognitive rehabilitation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Breast Cancer Treatment on Neural Noise: a Longitudinal Design.\",\"authors\":\"Robert D Melara, James C Root, Jay A Edelman, Maria Camilla Estelle, Isabella Mohr, Tim A Ahles\",\"doi\":\"10.1093/arclin/acae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cognitive dysfunction has been observed consistently in a subset of breast cancer survivors. Yet the precise neurophysiological origins of cancer-related cognitive decline remain unknown. The current study assessed neural noise (1/f activity in electroencephalogram [EEG]) in breast cancer survivors as a potential contributor to observed cognitive dysfunction from pre- to post-treatment.</p><p><strong>Methods: </strong>We measured EEG in a longitudinal design during performance of the paired-click task and the revised Attention Network Test (ANT-R) to investigate pre- versus post-treatment effects of neural noise in breast cancer patients (n = 20 in paired click; n = 19 in ANT-R) compared with healthy controls (n = 32 in paired click; n = 29 in ANT-R).</p><p><strong>Results: </strong>In both paradigms, one sensory (paired click) and one cognitive (ANT-R), we found that neural noise was significantly elevated after treatment in patients, remaining constant from pretest to posttest in controls. In the ANT-R, patients responded more slowly than controls on invalid cuing trials. Increased neural noise was associated with poorer alerting and poorer inhibitory control of attention (as measured by behavioral network scores), particularly for patients after treatment.</p><p><strong>Conclusions: </strong>The current study is the first to show a deleterious effect of breast cancer and/or cancer treatment on neural noise, pointing to alterations in the relative balance of excitatory and inhibitory synaptic inputs, while also suggesting promising approaches for cognitive rehabilitation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1093/arclin/acae066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/arclin/acae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effects of Breast Cancer Treatment on Neural Noise: a Longitudinal Design.
Objective: Cognitive dysfunction has been observed consistently in a subset of breast cancer survivors. Yet the precise neurophysiological origins of cancer-related cognitive decline remain unknown. The current study assessed neural noise (1/f activity in electroencephalogram [EEG]) in breast cancer survivors as a potential contributor to observed cognitive dysfunction from pre- to post-treatment.
Methods: We measured EEG in a longitudinal design during performance of the paired-click task and the revised Attention Network Test (ANT-R) to investigate pre- versus post-treatment effects of neural noise in breast cancer patients (n = 20 in paired click; n = 19 in ANT-R) compared with healthy controls (n = 32 in paired click; n = 29 in ANT-R).
Results: In both paradigms, one sensory (paired click) and one cognitive (ANT-R), we found that neural noise was significantly elevated after treatment in patients, remaining constant from pretest to posttest in controls. In the ANT-R, patients responded more slowly than controls on invalid cuing trials. Increased neural noise was associated with poorer alerting and poorer inhibitory control of attention (as measured by behavioral network scores), particularly for patients after treatment.
Conclusions: The current study is the first to show a deleterious effect of breast cancer and/or cancer treatment on neural noise, pointing to alterations in the relative balance of excitatory and inhibitory synaptic inputs, while also suggesting promising approaches for cognitive rehabilitation.