电阻式存储器非挥发性的热力学起源

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.07.018
Jingxian Li , Anirudh Appachar , Sabrina L. Peczonczyk , Elisa T. Harrison , Anton V. Ievlev , Ryan Hood , Dongjae Shin , Sangmin Yoo , Brianna Roest , Kai Sun , Karsten Beckmann , Olya Popova , Tony Chiang , William S. Wahby , Robin B. Jacobs-Godrim , Matthew J. Marinella , Petro Maksymovych , John T. Heron , Nathaniel Cady , Wei D. Lu , Yiyang Li
{"title":"电阻式存储器非挥发性的热力学起源","authors":"Jingxian Li ,&nbsp;Anirudh Appachar ,&nbsp;Sabrina L. Peczonczyk ,&nbsp;Elisa T. Harrison ,&nbsp;Anton V. Ievlev ,&nbsp;Ryan Hood ,&nbsp;Dongjae Shin ,&nbsp;Sangmin Yoo ,&nbsp;Brianna Roest ,&nbsp;Kai Sun ,&nbsp;Karsten Beckmann ,&nbsp;Olya Popova ,&nbsp;Tony Chiang ,&nbsp;William S. Wahby ,&nbsp;Robin B. Jacobs-Godrim ,&nbsp;Matthew J. Marinella ,&nbsp;Petro Maksymovych ,&nbsp;John T. Heron ,&nbsp;Nathaniel Cady ,&nbsp;Wei D. Lu ,&nbsp;Yiyang Li","doi":"10.1016/j.matt.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><div>Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3970-3993"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic origin of nonvolatility in resistive memory\",\"authors\":\"Jingxian Li ,&nbsp;Anirudh Appachar ,&nbsp;Sabrina L. Peczonczyk ,&nbsp;Elisa T. Harrison ,&nbsp;Anton V. Ievlev ,&nbsp;Ryan Hood ,&nbsp;Dongjae Shin ,&nbsp;Sangmin Yoo ,&nbsp;Brianna Roest ,&nbsp;Kai Sun ,&nbsp;Karsten Beckmann ,&nbsp;Olya Popova ,&nbsp;Tony Chiang ,&nbsp;William S. Wahby ,&nbsp;Robin B. Jacobs-Godrim ,&nbsp;Matthew J. Marinella ,&nbsp;Petro Maksymovych ,&nbsp;John T. Heron ,&nbsp;Nathaniel Cady ,&nbsp;Wei D. Lu ,&nbsp;Yiyang Li\",\"doi\":\"10.1016/j.matt.2024.07.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 11\",\"pages\":\"Pages 3970-3993\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524004284\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004284","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于高密度点缺陷迁移的电子开关(或称忆阻器)有望彻底改变后数字电子技术。尽管开展了大量研究,但灯丝形成和氧气传输的关键机制仍未得到解决,这阻碍了我们预测和设计器件特性的能力。例如,实验所获得的保留时间比现有模型预测的时间长 10 个数量级。在这里,我们利用电学测量、扫描探针显微镜和对氧化钽忆阻器的第一原理计算,揭示了导电丝的形成和稳定性在很大程度上取决于非晶态富氧和贫氧化合物的热力学稳定性,它们会发生成分相分离。将以前被忽视的这种非晶相分离的影响包括在内,可以调和无法解释的保留差异,并实现对保留稳定性等关键性能指标的预测性设计。这一结果强调,在缺陷密度大大超过当今共价半导体的后数字设备中,非理想热力学相互作用是关键的设计标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermodynamic origin of nonvolatility in resistive memory

Thermodynamic origin of nonvolatility in resistive memory

Thermodynamic origin of nonvolatility in resistive memory
Electronic switches based on the migration of high-density point defects, or memristors, are poised to revolutionize post-digital electronics. Despite significant research, key mechanisms for filament formation and oxygen transport remain unresolved, hindering our ability to predict and design device properties. For example, experiments have achieved 10 orders of magnitude longer retention times than predicted by current models. Here, using electrical measurements, scanning probe microscopy, and first-principles calculations on tantalum oxide memristors, we reveal that the formation and stability of conductive filaments crucially depend on the thermodynamic stability of the amorphous oxygen-rich and oxygen-poor compounds, which undergo composition phase separation. Including the previously neglected effects of this amorphous phase separation reconciles unexplained discrepancies in retention and enables predictive design of key performance indicators such as retention stability. This result emphasizes non-ideal thermodynamic interactions as key design criteria in post-digital devices with defect densities substantially exceeding those of today’s covalent semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信