无线分布式传感器节点的时间同步方法及其在灰尘实时监测中的应用

IF 1.1 4区 物理与天体物理 Q4 OPTICS
J. Junker, A. Furuya, H. Kawai, M. Ueno, M. Date
{"title":"无线分布式传感器节点的时间同步方法及其在灰尘实时监测中的应用","authors":"J. Junker, A. Furuya, H. Kawai, M. Ueno, M. Date","doi":"10.1007/s10043-024-00907-2","DOIUrl":null,"url":null,"abstract":"<p>In this study, we aim to conduct real-time sensing of indoor dust concentration distribution to mitigate the airborne transmission of coronaviruses. Airborne infection, facilitated by viruses present in particulate matter, emphasizes the importance of monitoring dust concentration as an indicator of virus spread. Our approach involves the implementation of a time-synchronized wireless sensor network for real-time sensing of dust concentration distribution. The time-synchronized wireless sensor network relies on a proposed time-synchronization algorithm, ensuring a time error of less than ± 1.27 ms. This precision enables the measurement of even fast-moving dust particles. To validate the feasibility of the wireless time-synchronized sensor network, we utilized a dust ejector (air cannon) and positioned time-synchronized sensors in a row. Dust particles released from the ejector passed through each time-synchronized sensor terminal. Simultaneously, a video recording (60 frames) was conducted, and the measured times of the time-synchronized sensor terminals were compared with the lap times of the video. The results of this comparison revealed identical lap times between the time-synchronized sensor data and the video, affirming the successful operation of the time-synchronized wireless distributed sensor node as designed.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time synchronization method of wireless distributed sensor node and its application for real-time dust monitoring\",\"authors\":\"J. Junker, A. Furuya, H. Kawai, M. Ueno, M. Date\",\"doi\":\"10.1007/s10043-024-00907-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we aim to conduct real-time sensing of indoor dust concentration distribution to mitigate the airborne transmission of coronaviruses. Airborne infection, facilitated by viruses present in particulate matter, emphasizes the importance of monitoring dust concentration as an indicator of virus spread. Our approach involves the implementation of a time-synchronized wireless sensor network for real-time sensing of dust concentration distribution. The time-synchronized wireless sensor network relies on a proposed time-synchronization algorithm, ensuring a time error of less than ± 1.27 ms. This precision enables the measurement of even fast-moving dust particles. To validate the feasibility of the wireless time-synchronized sensor network, we utilized a dust ejector (air cannon) and positioned time-synchronized sensors in a row. Dust particles released from the ejector passed through each time-synchronized sensor terminal. Simultaneously, a video recording (60 frames) was conducted, and the measured times of the time-synchronized sensor terminals were compared with the lap times of the video. The results of this comparison revealed identical lap times between the time-synchronized sensor data and the video, affirming the successful operation of the time-synchronized wireless distributed sensor node as designed.</p>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10043-024-00907-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00907-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们旨在对室内灰尘浓度分布进行实时感应,以减少冠状病毒在空气中的传播。微粒物质中的病毒会促进空气传播,因此监测灰尘浓度作为病毒传播的一个指标就显得尤为重要。我们的方法包括实施时间同步无线传感器网络,以实时感知粉尘浓度分布。时间同步无线传感器网络依赖于一种拟议的时间同步算法,确保时间误差小于 ± 1.27 毫秒。即使是快速移动的粉尘颗粒也能精确测量。为了验证无线时间同步传感器网络的可行性,我们使用了粉尘喷射器(空气炮),并将时间同步传感器放置成一排。从喷射器中释放出来的尘埃粒子穿过每个时间同步传感器终端。与此同时,还进行了视频录制(60 帧),并将时间同步传感器终端的测量时间与视频的圈速时间进行了比较。比较结果表明,时间同步传感器数据和视频的圈速完全相同,从而证明了时间同步无线分布式传感器节点的成功运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Time synchronization method of wireless distributed sensor node and its application for real-time dust monitoring

Time synchronization method of wireless distributed sensor node and its application for real-time dust monitoring

In this study, we aim to conduct real-time sensing of indoor dust concentration distribution to mitigate the airborne transmission of coronaviruses. Airborne infection, facilitated by viruses present in particulate matter, emphasizes the importance of monitoring dust concentration as an indicator of virus spread. Our approach involves the implementation of a time-synchronized wireless sensor network for real-time sensing of dust concentration distribution. The time-synchronized wireless sensor network relies on a proposed time-synchronization algorithm, ensuring a time error of less than ± 1.27 ms. This precision enables the measurement of even fast-moving dust particles. To validate the feasibility of the wireless time-synchronized sensor network, we utilized a dust ejector (air cannon) and positioned time-synchronized sensors in a row. Dust particles released from the ejector passed through each time-synchronized sensor terminal. Simultaneously, a video recording (60 frames) was conducted, and the measured times of the time-synchronized sensor terminals were compared with the lap times of the video. The results of this comparison revealed identical lap times between the time-synchronized sensor data and the video, affirming the successful operation of the time-synchronized wireless distributed sensor node as designed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信