Kitt Falk Petersen, Sylvie Dufour, Wajahat Z. Mehal, Gerald I. Shulman
{"title":"胰高血糖素促进脂肪肝患者肝线粒体氧化和丙酮酸羧化酶通量的增加","authors":"Kitt Falk Petersen, Sylvie Dufour, Wajahat Z. Mehal, Gerald I. Shulman","doi":"10.1016/j.cmet.2024.07.023","DOIUrl":null,"url":null,"abstract":"<p>We assessed <em>in vivo</em> rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized <sup>1</sup>H magnetic resonance spectroscopy (MRS). We found that <em>in vivo</em> rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased <em>in vivo</em> rates of hepatic mitochondrial oxidation by 50%–75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"16 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease\",\"authors\":\"Kitt Falk Petersen, Sylvie Dufour, Wajahat Z. Mehal, Gerald I. Shulman\",\"doi\":\"10.1016/j.cmet.2024.07.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We assessed <em>in vivo</em> rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized <sup>1</sup>H magnetic resonance spectroscopy (MRS). We found that <em>in vivo</em> rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased <em>in vivo</em> rates of hepatic mitochondrial oxidation by 50%–75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.</p>\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.07.023\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.07.023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
We assessed in vivo rates of hepatic mitochondrial oxidation, gluconeogenesis, and β-hydroxybutyrate (β-OHB) turnover by positional isotopomer NMR tracer analysis (PINTA) in individuals with metabolic-dysfunction-associated steatotic liver (MASL) (fatty liver) and MASL disease (MASLD) (steatohepatitis) compared with BMI-matched control participants with no hepatic steatosis. Hepatic fat content was quantified by localized 1H magnetic resonance spectroscopy (MRS). We found that in vivo rates of hepatic mitochondrial oxidation were unaltered in the MASL and MASLD groups compared with the control group. A physiological increase in plasma glucagon concentrations increased in vivo rates of hepatic mitochondrial oxidation by 50%–75% in individuals with and without MASL and increased rates of glucose production by ∼50% in the MASL group, which could be attributed in part to an ∼30% increase in rates of mitochondrial pyruvate carboxylase flux. These results demonstrate that (1) rates of hepatic mitochondrial oxidation are not substantially altered in individuals with MASL and MASLD and (2) glucagon increases rates of hepatic mitochondrial oxidation.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.