{"title":"利用局部周期性驱动在光晶格中实现可单独调谐的隧道系数","authors":"Georgia M Nixon, F Nur Ünal and Ulrich Schneider","doi":"10.1088/2058-9565/ad69bb","DOIUrl":null,"url":null,"abstract":"Ultracold atoms in optical lattices have emerged as powerful quantum simulators of translationally invariant systems with many applications in e.g. strongly-correlated and topological systems. However, the ability to locally tune all Hamiltonian parameters remains an outstanding goal that would enable the simulation of a wider range of quantum phenomena. Motivated by recent advances in quantum gas microscopes and optical tweezers, we here show theoretically how local control over individual tunnelling links in an optical lattice can be achieved by incorporating local time-periodic potentials. We propose to periodically modulate the on-site energy of individual lattice sites and employ Floquet theory to demonstrate how this provides full individual control over the tunnelling amplitudes in one dimension. We provide various example configurations realising interesting topological models such as extended Su–Schrieffer–Heeger models that would be challenging to realise by other means. Extending to two dimensions, we demonstrate that local periodic driving in a Lieb lattice engineers a two-dimensional (2D) network with fully controllable tunnelling magnitudes. In a three-site plaquette, we show full simultaneous control over the relative tunnelling amplitudes and the gauge-invariant flux piercing the plaquette, providing a clear stepping stone to building a fully programmable 2D tight-binding model. We also explicitly demonstrate how utilise our technique to generate a magnetic field gradient in 2D. This local modulation scheme is applicable to many different lattice geometries.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individually tunable tunnelling coefficients in optical lattices using local periodic driving\",\"authors\":\"Georgia M Nixon, F Nur Ünal and Ulrich Schneider\",\"doi\":\"10.1088/2058-9565/ad69bb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultracold atoms in optical lattices have emerged as powerful quantum simulators of translationally invariant systems with many applications in e.g. strongly-correlated and topological systems. However, the ability to locally tune all Hamiltonian parameters remains an outstanding goal that would enable the simulation of a wider range of quantum phenomena. Motivated by recent advances in quantum gas microscopes and optical tweezers, we here show theoretically how local control over individual tunnelling links in an optical lattice can be achieved by incorporating local time-periodic potentials. We propose to periodically modulate the on-site energy of individual lattice sites and employ Floquet theory to demonstrate how this provides full individual control over the tunnelling amplitudes in one dimension. We provide various example configurations realising interesting topological models such as extended Su–Schrieffer–Heeger models that would be challenging to realise by other means. Extending to two dimensions, we demonstrate that local periodic driving in a Lieb lattice engineers a two-dimensional (2D) network with fully controllable tunnelling magnitudes. In a three-site plaquette, we show full simultaneous control over the relative tunnelling amplitudes and the gauge-invariant flux piercing the plaquette, providing a clear stepping stone to building a fully programmable 2D tight-binding model. We also explicitly demonstrate how utilise our technique to generate a magnetic field gradient in 2D. This local modulation scheme is applicable to many different lattice geometries.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad69bb\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad69bb","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Individually tunable tunnelling coefficients in optical lattices using local periodic driving
Ultracold atoms in optical lattices have emerged as powerful quantum simulators of translationally invariant systems with many applications in e.g. strongly-correlated and topological systems. However, the ability to locally tune all Hamiltonian parameters remains an outstanding goal that would enable the simulation of a wider range of quantum phenomena. Motivated by recent advances in quantum gas microscopes and optical tweezers, we here show theoretically how local control over individual tunnelling links in an optical lattice can be achieved by incorporating local time-periodic potentials. We propose to periodically modulate the on-site energy of individual lattice sites and employ Floquet theory to demonstrate how this provides full individual control over the tunnelling amplitudes in one dimension. We provide various example configurations realising interesting topological models such as extended Su–Schrieffer–Heeger models that would be challenging to realise by other means. Extending to two dimensions, we demonstrate that local periodic driving in a Lieb lattice engineers a two-dimensional (2D) network with fully controllable tunnelling magnitudes. In a three-site plaquette, we show full simultaneous control over the relative tunnelling amplitudes and the gauge-invariant flux piercing the plaquette, providing a clear stepping stone to building a fully programmable 2D tight-binding model. We also explicitly demonstrate how utilise our technique to generate a magnetic field gradient in 2D. This local modulation scheme is applicable to many different lattice geometries.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.