{"title":"识别电解水用氧化铱催化剂表面的重组图案","authors":"","doi":"10.1038/s41929-024-01201-9","DOIUrl":null,"url":null,"abstract":"Using electron- and X-ray-based characterization techniques, three paracrystalline structural motifs are shown to form at the surface of amorphized iridium oxide catalysts upon use for water electrolysis in acidic conditions. An iridium oxide catalyst containing only these paracrystalline structural motifs achieves enhanced performance, making more efficient use of its limited iridium content.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying restructured motifs on iridium oxide catalyst surfaces for water electrolysis\",\"authors\":\"\",\"doi\":\"10.1038/s41929-024-01201-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using electron- and X-ray-based characterization techniques, three paracrystalline structural motifs are shown to form at the surface of amorphized iridium oxide catalysts upon use for water electrolysis in acidic conditions. An iridium oxide catalyst containing only these paracrystalline structural motifs achieves enhanced performance, making more efficient use of its limited iridium content.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01201-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01201-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用基于电子和 X 射线的表征技术,在酸性条件下用于水电解时,非晶态氧化铱催化剂表面会形成三种副晶结构图案。仅含有这些副晶结构图案的氧化铱催化剂性能得到了提高,使其有限的铱含量得到了更有效的利用。
Identifying restructured motifs on iridium oxide catalyst surfaces for water electrolysis
Using electron- and X-ray-based characterization techniques, three paracrystalline structural motifs are shown to form at the surface of amorphized iridium oxide catalysts upon use for water electrolysis in acidic conditions. An iridium oxide catalyst containing only these paracrystalline structural motifs achieves enhanced performance, making more efficient use of its limited iridium content.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.