{"title":"气候变异事件对孟加拉湾中尺度涡流的影响","authors":"Mohima Sultana Mimi , Md. Kawser Ahmed , K.M. Azam Chowdhury , Md. Nazmus Sanib Chowdhury , Ashraful Moontahab","doi":"10.1016/j.seares.2024.102532","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the temporal variability of mesoscale eddies in the Bay of Bengal (BoB) over a 29-year period (1993–2021) using satellite altimeters. High-resolution daily sea level anomaly data are considered to identify the mesoscale eddies in the BoB utilizing py-eddy-tracker, an automated eddy detection and tracking method. Wavelet coherence analysis was conducted to find a statistically significant relation between eddy properties and climate indices. The findings indicate that anti-cyclonic eddies are more susceptible to the consequence of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) than cyclonic eddies. Additionally, the joined impact of ENSO and IOD conceivably alters eddy activities across the BoB, as the second downwelling coastal Kelvin wave (dCKW) were absent. The mesoscale eddies exhibit correlations with climate indicators, suggesting that eddies get stronger during La Niña and negative IOD years and get weaker during El Niño and positive IOD years. This is because La Niña and negative IOD events intensify the second dCKW, while it weakens or becomes completely absent during El Niño and positive IOD years. Random Forest model was used to compare the influence of ENSO and IOD on the forecasting performance of the eddy properties. It was demonstrated that a unique positive IOD (+IOD) negatively affects the forecasting of eddy properties when using Sea Surface Temperature (SST) and SST anomalies. The findings bear importance in verifying and confirming the interactions between the ocean and climate.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"201 ","pages":"Article 102532"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1385110124000650/pdfft?md5=e73f6c8c3fac8593c364bc4ae324256b&pid=1-s2.0-S1385110124000650-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The influence of climate variability events on the mesoscale eddies in the Bay of Bengal\",\"authors\":\"Mohima Sultana Mimi , Md. Kawser Ahmed , K.M. Azam Chowdhury , Md. Nazmus Sanib Chowdhury , Ashraful Moontahab\",\"doi\":\"10.1016/j.seares.2024.102532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the temporal variability of mesoscale eddies in the Bay of Bengal (BoB) over a 29-year period (1993–2021) using satellite altimeters. High-resolution daily sea level anomaly data are considered to identify the mesoscale eddies in the BoB utilizing py-eddy-tracker, an automated eddy detection and tracking method. Wavelet coherence analysis was conducted to find a statistically significant relation between eddy properties and climate indices. The findings indicate that anti-cyclonic eddies are more susceptible to the consequence of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) than cyclonic eddies. Additionally, the joined impact of ENSO and IOD conceivably alters eddy activities across the BoB, as the second downwelling coastal Kelvin wave (dCKW) were absent. The mesoscale eddies exhibit correlations with climate indicators, suggesting that eddies get stronger during La Niña and negative IOD years and get weaker during El Niño and positive IOD years. This is because La Niña and negative IOD events intensify the second dCKW, while it weakens or becomes completely absent during El Niño and positive IOD years. Random Forest model was used to compare the influence of ENSO and IOD on the forecasting performance of the eddy properties. It was demonstrated that a unique positive IOD (+IOD) negatively affects the forecasting of eddy properties when using Sea Surface Temperature (SST) and SST anomalies. The findings bear importance in verifying and confirming the interactions between the ocean and climate.</p></div>\",\"PeriodicalId\":50056,\"journal\":{\"name\":\"Journal of Sea Research\",\"volume\":\"201 \",\"pages\":\"Article 102532\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000650/pdfft?md5=e73f6c8c3fac8593c364bc4ae324256b&pid=1-s2.0-S1385110124000650-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sea Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000650\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385110124000650","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The influence of climate variability events on the mesoscale eddies in the Bay of Bengal
This study investigates the temporal variability of mesoscale eddies in the Bay of Bengal (BoB) over a 29-year period (1993–2021) using satellite altimeters. High-resolution daily sea level anomaly data are considered to identify the mesoscale eddies in the BoB utilizing py-eddy-tracker, an automated eddy detection and tracking method. Wavelet coherence analysis was conducted to find a statistically significant relation between eddy properties and climate indices. The findings indicate that anti-cyclonic eddies are more susceptible to the consequence of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) than cyclonic eddies. Additionally, the joined impact of ENSO and IOD conceivably alters eddy activities across the BoB, as the second downwelling coastal Kelvin wave (dCKW) were absent. The mesoscale eddies exhibit correlations with climate indicators, suggesting that eddies get stronger during La Niña and negative IOD years and get weaker during El Niño and positive IOD years. This is because La Niña and negative IOD events intensify the second dCKW, while it weakens or becomes completely absent during El Niño and positive IOD years. Random Forest model was used to compare the influence of ENSO and IOD on the forecasting performance of the eddy properties. It was demonstrated that a unique positive IOD (+IOD) negatively affects the forecasting of eddy properties when using Sea Surface Temperature (SST) and SST anomalies. The findings bear importance in verifying and confirming the interactions between the ocean and climate.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.