Yuliang Wu , Mengyu Wang , Kaiyuan Zhang , Xianghui Tian , Shumeng Wang , Lixiang Wang
{"title":"基于苯并咪唑的电子传输宿主,用于高效纯蓝窄带 OLED 器件","authors":"Yuliang Wu , Mengyu Wang , Kaiyuan Zhang , Xianghui Tian , Shumeng Wang , Lixiang Wang","doi":"10.1016/j.orgel.2024.107120","DOIUrl":null,"url":null,"abstract":"<div><p>Two electron-transport host materials are synthesized by linking anthracene with benzimidazole derivatives through a unit of methyl substituted phenyl. The methyl substitution generates a large dihedral angle between the benzimidazole plane and bridging phenyl, keeping the excited state distribution and energy levels of T<sub>1</sub> and S<sub>1</sub> unchanged. The electron-only devices reveal that the two hosts have obviously enhanced electron transport ability than that of Ph-AN-MBP without benzimidazole. As a result, the devices with Ph-AN-BIZ and N1-AN-BIZ as hosts and a blue multiple resonance material of <em>t</em>BuCz-DABNA as emitter exhibit high external quantum efficiency of 10.1 % and 9.1 %, respectively, and low turn-on voltage of 2.7 V, which is better than those of Ph-AN-MBP based device (7.9 %, 3.4 V). And their electroluminescence spectra have a very small full-width at half-maximum of 16.2 nm and pure blue color with CIE coordinates of (0.12, 0.11).</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"134 ","pages":"Article 107120"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzimidazole based electron-transport hosts for efficient pure blue narrowband OLED device\",\"authors\":\"Yuliang Wu , Mengyu Wang , Kaiyuan Zhang , Xianghui Tian , Shumeng Wang , Lixiang Wang\",\"doi\":\"10.1016/j.orgel.2024.107120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two electron-transport host materials are synthesized by linking anthracene with benzimidazole derivatives through a unit of methyl substituted phenyl. The methyl substitution generates a large dihedral angle between the benzimidazole plane and bridging phenyl, keeping the excited state distribution and energy levels of T<sub>1</sub> and S<sub>1</sub> unchanged. The electron-only devices reveal that the two hosts have obviously enhanced electron transport ability than that of Ph-AN-MBP without benzimidazole. As a result, the devices with Ph-AN-BIZ and N1-AN-BIZ as hosts and a blue multiple resonance material of <em>t</em>BuCz-DABNA as emitter exhibit high external quantum efficiency of 10.1 % and 9.1 %, respectively, and low turn-on voltage of 2.7 V, which is better than those of Ph-AN-MBP based device (7.9 %, 3.4 V). And their electroluminescence spectra have a very small full-width at half-maximum of 16.2 nm and pure blue color with CIE coordinates of (0.12, 0.11).</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"134 \",\"pages\":\"Article 107120\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001319\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Benzimidazole based electron-transport hosts for efficient pure blue narrowband OLED device
Two electron-transport host materials are synthesized by linking anthracene with benzimidazole derivatives through a unit of methyl substituted phenyl. The methyl substitution generates a large dihedral angle between the benzimidazole plane and bridging phenyl, keeping the excited state distribution and energy levels of T1 and S1 unchanged. The electron-only devices reveal that the two hosts have obviously enhanced electron transport ability than that of Ph-AN-MBP without benzimidazole. As a result, the devices with Ph-AN-BIZ and N1-AN-BIZ as hosts and a blue multiple resonance material of tBuCz-DABNA as emitter exhibit high external quantum efficiency of 10.1 % and 9.1 %, respectively, and low turn-on voltage of 2.7 V, which is better than those of Ph-AN-MBP based device (7.9 %, 3.4 V). And their electroluminescence spectra have a very small full-width at half-maximum of 16.2 nm and pure blue color with CIE coordinates of (0.12, 0.11).
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.