Tongzhi Niu , Zhenrong Wang , Weifeng Li , Kai Li , Yuwei Li , Guiyin Xu , Bin Li
{"title":"基于粗糙集从噪声标签中学习可信模型,用于表面缺陷检测","authors":"Tongzhi Niu , Zhenrong Wang , Weifeng Li , Kai Li , Yuwei Li , Guiyin Xu , Bin Li","doi":"10.1016/j.asoc.2024.112138","DOIUrl":null,"url":null,"abstract":"<div><p>In surface defect detection, some regions remain ambiguous and cannot be distinctly classified as abnormal or normal. This challenge is exacerbated by subjective factors, including workers’ emotional fluctuations and judgment variability, resulting in noisy labels that lead to false positives and missed detections. Current methods depend on additional labels, such as clean and multi-labels, which are both time-consuming and labor-intensive. To address this, we utilize Rough Set theory and Bayesian neural networks to learn a trustworthy model from noisy labels for Surface Defect Detection. Our approach features a novel pixel-level representation of suspicious areas using lower and upper approximations, and a novel loss function that emphasizes both precision and recall. The Pluggable Spatially Bayesian Module (PSBM) we developed enhances probabilistic segmentation, effectively capturing uncertainty without requiring extra labels or architectural modifications. Additionally, we have devised a ‘defect discrimination confidence’ metric to better quantify uncertainty and assist in product quality grading. Without the need for extra labeling, our method significantly outperforms state-of-the-art techniques across three types of datasets and enhances seven types of classic networks as a pluggable module, without compromising real-time computing performance. For further details and implementation, our code is accessible at <span><span>https://github.com/ntongzhi/RoughSet-BNNs</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning trustworthy model from noisy labels based on rough set for surface defect detection\",\"authors\":\"Tongzhi Niu , Zhenrong Wang , Weifeng Li , Kai Li , Yuwei Li , Guiyin Xu , Bin Li\",\"doi\":\"10.1016/j.asoc.2024.112138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In surface defect detection, some regions remain ambiguous and cannot be distinctly classified as abnormal or normal. This challenge is exacerbated by subjective factors, including workers’ emotional fluctuations and judgment variability, resulting in noisy labels that lead to false positives and missed detections. Current methods depend on additional labels, such as clean and multi-labels, which are both time-consuming and labor-intensive. To address this, we utilize Rough Set theory and Bayesian neural networks to learn a trustworthy model from noisy labels for Surface Defect Detection. Our approach features a novel pixel-level representation of suspicious areas using lower and upper approximations, and a novel loss function that emphasizes both precision and recall. The Pluggable Spatially Bayesian Module (PSBM) we developed enhances probabilistic segmentation, effectively capturing uncertainty without requiring extra labels or architectural modifications. Additionally, we have devised a ‘defect discrimination confidence’ metric to better quantify uncertainty and assist in product quality grading. Without the need for extra labeling, our method significantly outperforms state-of-the-art techniques across three types of datasets and enhances seven types of classic networks as a pluggable module, without compromising real-time computing performance. For further details and implementation, our code is accessible at <span><span>https://github.com/ntongzhi/RoughSet-BNNs</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624009128\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624009128","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning trustworthy model from noisy labels based on rough set for surface defect detection
In surface defect detection, some regions remain ambiguous and cannot be distinctly classified as abnormal or normal. This challenge is exacerbated by subjective factors, including workers’ emotional fluctuations and judgment variability, resulting in noisy labels that lead to false positives and missed detections. Current methods depend on additional labels, such as clean and multi-labels, which are both time-consuming and labor-intensive. To address this, we utilize Rough Set theory and Bayesian neural networks to learn a trustworthy model from noisy labels for Surface Defect Detection. Our approach features a novel pixel-level representation of suspicious areas using lower and upper approximations, and a novel loss function that emphasizes both precision and recall. The Pluggable Spatially Bayesian Module (PSBM) we developed enhances probabilistic segmentation, effectively capturing uncertainty without requiring extra labels or architectural modifications. Additionally, we have devised a ‘defect discrimination confidence’ metric to better quantify uncertainty and assist in product quality grading. Without the need for extra labeling, our method significantly outperforms state-of-the-art techniques across three types of datasets and enhances seven types of classic networks as a pluggable module, without compromising real-time computing performance. For further details and implementation, our code is accessible at https://github.com/ntongzhi/RoughSet-BNNs.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.