关于扩展的 1-完美比特等级

IF 0.7 3区 数学 Q2 MATHEMATICS
Evgeny A. Bespalov, Denis S. Krotov
{"title":"关于扩展的 1-完美比特等级","authors":"Evgeny A. Bespalov,&nbsp;Denis S. Krotov","doi":"10.1016/j.disc.2024.114222","DOIUrl":null,"url":null,"abstract":"<div><p>Extended 1-perfect codes in the Hamming scheme <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, we prove that such bitrades exist if and only if <span><math><mi>n</mi><mo>=</mo><mi>l</mi><mi>q</mi><mo>+</mo><mn>2</mn></math></span>. For any <em>q</em>, we prove the nonexistence of extended 1-perfect bitrades if <em>n</em> is odd.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114222"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534/pdfft?md5=7aec3e567941af5cc4f01f8b6f836939&pid=1-s2.0-S0012365X24003534-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On extended 1-perfect bitrades\",\"authors\":\"Evgeny A. Bespalov,&nbsp;Denis S. Krotov\",\"doi\":\"10.1016/j.disc.2024.114222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extended 1-perfect codes in the Hamming scheme <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in <span><math><mi>H</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, we prove that such bitrades exist if and only if <span><math><mi>n</mi><mo>=</mo><mi>l</mi><mi>q</mi><mo>+</mo><mn>2</mn></math></span>. For any <em>q</em>, we prove the nonexistence of extended 1-perfect bitrades if <em>n</em> is odd.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114222\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003534/pdfft?md5=7aec3e567941af5cc4f01f8b6f836939&pid=1-s2.0-S0012365X24003534-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003534\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003534","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

汉明方案 H(n,q) 中的扩展 1-perfect 码可以等价地定义为在任意坐标上穿刺后变为 1-perfect 码的码,具有一定交集数组的完全规则码,具有一定权系数的均匀堆积码,相对于一定反码的直径完美码,具有一定对偶距离的距离-4 码。我们以五种不同的方式定义 H(n,q) 中的扩展 1-perfect bitrades,与扩展 1-perfect 码的不同定义相对应,并证明这些扩展 1-perfect bitrades 定义的等价性。对于 q=2m,我们证明当且仅当 n=lq+2 时存在这样的比特等级。对于任意 q,如果 n 为奇数,我们证明扩展的 1-perfect 比特等级不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extended 1-perfect bitrades

Extended 1-perfect codes in the Hamming scheme H(n,q) can be equivalently defined as codes that turn to 1-perfect codes after puncturing in any coordinate, as completely regular codes with certain intersection array, as uniformly packed codes with certain weight coefficients, as diameter perfect codes with respect to a certain anticode, as distance-4 codes with certain dual distances. We define extended 1-perfect bitrades in H(n,q) in five different manners, corresponding to the different definitions of extended 1-perfect codes, and prove the equivalence of these definitions of extended 1-perfect bitrades. For q=2m, we prove that such bitrades exist if and only if n=lq+2. For any q, we prove the nonexistence of extended 1-perfect bitrades if n is odd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信