{"title":"纳米脂质体包裹的 β-茶碱能有效提高对烟粉虱 MED 的防治效果","authors":"","doi":"10.1016/j.pestbp.2024.106082","DOIUrl":null,"url":null,"abstract":"<div><p><em>Bemisia tabaci</em> poses a severe threat to plants, and the control of <em>B. tabaci</em> mainly relies on pesticides, which causes more and more rapidly increasing resistance. β-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and β-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of β-caryophyllene. The size of the β-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against <em>B. tabaci</em>, with an LC<sub>50</sub> of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Caryophyllene wrapped by nanoliposomes efficiently increases the control effect on Bemisia tabaci MED\",\"authors\":\"\",\"doi\":\"10.1016/j.pestbp.2024.106082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Bemisia tabaci</em> poses a severe threat to plants, and the control of <em>B. tabaci</em> mainly relies on pesticides, which causes more and more rapidly increasing resistance. β-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and β-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of β-caryophyllene. The size of the β-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against <em>B. tabaci</em>, with an LC<sub>50</sub> of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003158\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003158","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
β-Caryophyllene wrapped by nanoliposomes efficiently increases the control effect on Bemisia tabaci MED
Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. β-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and β-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of β-caryophyllene. The size of the β-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.