{"title":"在哈洛石纳米晶体存在下产生的 α- Al2O3 的增强型 OSL 发射","authors":"C.B.B.M. Ferreira , H.P. Labaki , R.R. Gonçalves , E.J. Guidelli","doi":"10.1016/j.clay.2024.107543","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) compounds are extensively used in ionizing radiation dosimetry due to their high sensitivity when doped with carbon. However, their production is difficult and expensive, leading to much research on alternative ways to increase its sensitivity. This paper proposes a seed-mediated synthesis of α-Al<sub>2</sub>O<sub>3</sub> by the combustion method with halloysite nanocrystals as seeds, which also have the ability to scavenge heavy metal ions. The dosimetric features were studied by radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL). Scanning electron microscopy images and X-ray diffraction patterns pointed to the halloysite nanotubes (HNT) acting as heterogeneous nucleation seeds, and as adsorber centers for the chromium ions (Cr<sup>3+</sup>), as evidenced by the decreased crystallite size and Cr<sup>3+</sup> RL emission. Decreased TL intensity upon increasing HNT content in addition to the RL data suggested that the Cr<sup>3+</sup> ions strongly participate in the TL emission process as a luminescent center. Remarkable 6-fold enhanced OSL area intensity and 69-fold OSL initial intensity enhancement were registered from the samples seed-mediated by HNT, revealing that, by scavenging Cr<sup>3+</sup>, the HNT eliminated a luminescent center that competes with the OSL emission. Therefore, HNTs are promising nanomaterials to enhance the sensitivity of Al<sub>2</sub>O<sub>3</sub> dosimeters with potential application in medical physics, where a decrease in the density of concurrent luminescent centers and an increase in OSL intensity were evidenced by the presence of HNT in Al<sub>2</sub>O<sub>3</sub>.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107543"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced OSL emission from α- Al2O3 produced in the presence of halloysite nanocrystals\",\"authors\":\"C.B.B.M. Ferreira , H.P. Labaki , R.R. Gonçalves , E.J. Guidelli\",\"doi\":\"10.1016/j.clay.2024.107543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) compounds are extensively used in ionizing radiation dosimetry due to their high sensitivity when doped with carbon. However, their production is difficult and expensive, leading to much research on alternative ways to increase its sensitivity. This paper proposes a seed-mediated synthesis of α-Al<sub>2</sub>O<sub>3</sub> by the combustion method with halloysite nanocrystals as seeds, which also have the ability to scavenge heavy metal ions. The dosimetric features were studied by radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL). Scanning electron microscopy images and X-ray diffraction patterns pointed to the halloysite nanotubes (HNT) acting as heterogeneous nucleation seeds, and as adsorber centers for the chromium ions (Cr<sup>3+</sup>), as evidenced by the decreased crystallite size and Cr<sup>3+</sup> RL emission. Decreased TL intensity upon increasing HNT content in addition to the RL data suggested that the Cr<sup>3+</sup> ions strongly participate in the TL emission process as a luminescent center. Remarkable 6-fold enhanced OSL area intensity and 69-fold OSL initial intensity enhancement were registered from the samples seed-mediated by HNT, revealing that, by scavenging Cr<sup>3+</sup>, the HNT eliminated a luminescent center that competes with the OSL emission. Therefore, HNTs are promising nanomaterials to enhance the sensitivity of Al<sub>2</sub>O<sub>3</sub> dosimeters with potential application in medical physics, where a decrease in the density of concurrent luminescent centers and an increase in OSL intensity were evidenced by the presence of HNT in Al<sub>2</sub>O<sub>3</sub>.</p></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"260 \",\"pages\":\"Article 107543\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131724002916\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724002916","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced OSL emission from α- Al2O3 produced in the presence of halloysite nanocrystals
Aluminum oxide (Al2O3) compounds are extensively used in ionizing radiation dosimetry due to their high sensitivity when doped with carbon. However, their production is difficult and expensive, leading to much research on alternative ways to increase its sensitivity. This paper proposes a seed-mediated synthesis of α-Al2O3 by the combustion method with halloysite nanocrystals as seeds, which also have the ability to scavenge heavy metal ions. The dosimetric features were studied by radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL). Scanning electron microscopy images and X-ray diffraction patterns pointed to the halloysite nanotubes (HNT) acting as heterogeneous nucleation seeds, and as adsorber centers for the chromium ions (Cr3+), as evidenced by the decreased crystallite size and Cr3+ RL emission. Decreased TL intensity upon increasing HNT content in addition to the RL data suggested that the Cr3+ ions strongly participate in the TL emission process as a luminescent center. Remarkable 6-fold enhanced OSL area intensity and 69-fold OSL initial intensity enhancement were registered from the samples seed-mediated by HNT, revealing that, by scavenging Cr3+, the HNT eliminated a luminescent center that competes with the OSL emission. Therefore, HNTs are promising nanomaterials to enhance the sensitivity of Al2O3 dosimeters with potential application in medical physics, where a decrease in the density of concurrent luminescent centers and an increase in OSL intensity were evidenced by the presence of HNT in Al2O3.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...