{"title":"利用显微镜观察试验性循环水产养殖和鱼菜共生系统中纤毛虫的多样性和生长率","authors":"Stefanos Moschos , Konstantinos Ar. Kormas , Hera Karayanni","doi":"10.1016/j.ejop.2024.126113","DOIUrl":null,"url":null,"abstract":"<div><p>The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L<sup>−1</sup> and 58 ± 8 to 147 ± 18 nanoflagellates mL<sup>−1</sup> in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L<sup>−1</sup> in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d<sup>−1</sup> compared to 0.54 ± 0.03 to 0.79 ± 0.05 d<sup>−1</sup> in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d<sup>−1</sup> and 4.09 ± 0.11 d<sup>−1</sup> to 6.03 ± 0.34 d<sup>−1</sup>in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system’s operation cycle.</p></div>","PeriodicalId":12042,"journal":{"name":"European journal of protistology","volume":"95 ","pages":"Article 126113"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ciliate diversity and growth rates in experimental recirculating aquaculture and aquaponics systems using microscopy\",\"authors\":\"Stefanos Moschos , Konstantinos Ar. Kormas , Hera Karayanni\",\"doi\":\"10.1016/j.ejop.2024.126113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L<sup>−1</sup> and 58 ± 8 to 147 ± 18 nanoflagellates mL<sup>−1</sup> in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L<sup>−1</sup> in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d<sup>−1</sup> compared to 0.54 ± 0.03 to 0.79 ± 0.05 d<sup>−1</sup> in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d<sup>−1</sup> and 4.09 ± 0.11 d<sup>−1</sup> to 6.03 ± 0.34 d<sup>−1</sup>in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system’s operation cycle.</p></div>\",\"PeriodicalId\":12042,\"journal\":{\"name\":\"European journal of protistology\",\"volume\":\"95 \",\"pages\":\"Article 126113\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of protistology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0932473924000634\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of protistology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0932473924000634","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Ciliate diversity and growth rates in experimental recirculating aquaculture and aquaponics systems using microscopy
The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L−1 and 58 ± 8 to 147 ± 18 nanoflagellates mL−1 in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L−1 in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d−1 compared to 0.54 ± 0.03 to 0.79 ± 0.05 d−1 in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d−1 and 4.09 ± 0.11 d−1 to 6.03 ± 0.34 d−1in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system’s operation cycle.
期刊介绍:
Articles deal with protists, unicellular organisms encountered free-living in various habitats or as parasites or used in basic research or applications. The European Journal of Protistology covers topics such as the structure and systematics of protists, their development, ecology, molecular biology and physiology. Beside publishing original articles the journal offers a forum for announcing scientific meetings. Reviews of recently published books are included as well. With its diversity of topics, the European Journal of Protistology is an essential source of information for every active protistologist and for biologists of various fields.