{"title":"组合霍普夫单体的色度准对称类函数","authors":"Jacob A. White","doi":"10.1016/j.ejc.2024.104055","DOIUrl":null,"url":null,"abstract":"<div><p>We study the chromatic quasisymmetric class function of a linearized combinatorial Hopf monoid. Given a linearized combinatorial Hopf monoid <span><math><mi>H</mi></math></span>, and an <span><math><mi>H</mi></math></span>-structure <span><math><mi>h</mi></math></span> on a set <span><math><mi>N</mi></math></span>, there are proper colorings of <span><math><mi>h</mi></math></span>, generalizing graph colorings and poset partitions. We show that the automorphism group of <span><math><mi>h</mi></math></span> acts on the set of proper colorings. The chromatic quasisymmetric class function enumerates the fixed points of this action, weighting each coloring with a monomial. For the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric function and specializes to the orbital chromatic polynomial of Cameron and Kayibi. We deduce various inequalities for the associated orbital polynomial invariants. We apply these results to several examples related to enumerating graph colorings, poset partitions, generic functions on matroids or generalized permutohedra, and others.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001409/pdfft?md5=63ba3288644e8ff2f9de5b9b878244e1&pid=1-s2.0-S0195669824001409-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chromatic quasisymmetric class functions for combinatorial Hopf monoids\",\"authors\":\"Jacob A. White\",\"doi\":\"10.1016/j.ejc.2024.104055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the chromatic quasisymmetric class function of a linearized combinatorial Hopf monoid. Given a linearized combinatorial Hopf monoid <span><math><mi>H</mi></math></span>, and an <span><math><mi>H</mi></math></span>-structure <span><math><mi>h</mi></math></span> on a set <span><math><mi>N</mi></math></span>, there are proper colorings of <span><math><mi>h</mi></math></span>, generalizing graph colorings and poset partitions. We show that the automorphism group of <span><math><mi>h</mi></math></span> acts on the set of proper colorings. The chromatic quasisymmetric class function enumerates the fixed points of this action, weighting each coloring with a monomial. For the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric function and specializes to the orbital chromatic polynomial of Cameron and Kayibi. We deduce various inequalities for the associated orbital polynomial invariants. We apply these results to several examples related to enumerating graph colorings, poset partitions, generic functions on matroids or generalized permutohedra, and others.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001409/pdfft?md5=63ba3288644e8ff2f9de5b9b878244e1&pid=1-s2.0-S0195669824001409-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001409\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001409","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究线性化组合霍普夫单元的色度准对称类函数。给定一个线性化组合霍普夫单元 H 和一个集合 N 上的 H 结构 h,就有 h 的适当着色,即图形着色和正集分割的一般化。我们证明了 h 的自变群作用于适当着色的集合。色度准对称类函数枚举了这一作用的定点,用一个单项式对每个着色进行加权。对于图的 Hopf monoid,这个不变量概括了斯坦利的色度对称函数,并特化为卡梅隆和卡伊比的轨道色度多项式。我们推导出了相关轨道多项式不变量的各种不等式。我们将这些结果应用于与枚举图着色、poset 分区、矩阵上的泛函或广义 permutohedra 等相关的几个例子中。
Chromatic quasisymmetric class functions for combinatorial Hopf monoids
We study the chromatic quasisymmetric class function of a linearized combinatorial Hopf monoid. Given a linearized combinatorial Hopf monoid , and an -structure on a set , there are proper colorings of , generalizing graph colorings and poset partitions. We show that the automorphism group of acts on the set of proper colorings. The chromatic quasisymmetric class function enumerates the fixed points of this action, weighting each coloring with a monomial. For the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric function and specializes to the orbital chromatic polynomial of Cameron and Kayibi. We deduce various inequalities for the associated orbital polynomial invariants. We apply these results to several examples related to enumerating graph colorings, poset partitions, generic functions on matroids or generalized permutohedra, and others.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.