Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu
{"title":"富氮条件下无脊椎动物性状对垃圾化学加速分解的响应","authors":"Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu","doi":"10.1016/j.soilbio.2024.109572","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha<sup>−1</sup> yr<sup>−1</sup>) and N enrichment (90 kg N ha<sup>−1</sup> yr<sup>−1</sup>) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment\",\"authors\":\"Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu\",\"doi\":\"10.1016/j.soilbio.2024.109572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha<sup>−1</sup> yr<sup>−1</sup>) and N enrichment (90 kg N ha<sup>−1</sup> yr<sup>−1</sup>) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.</p></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003807172400261X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003807172400261X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment
Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha−1 yr−1) and N enrichment (90 kg N ha−1 yr−1) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.