石墨烯辅助改善锌离子水电池锰钒氧化物的电化学性能

Xiaowen Niu, Jianhai Chen, Yongtao Tan
{"title":"石墨烯辅助改善锌离子水电池锰钒氧化物的电化学性能","authors":"Xiaowen Niu,&nbsp;Jianhai Chen,&nbsp;Yongtao Tan","doi":"10.1016/j.nxener.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Layer spacing of vanadium oxide can be effectively expanded by metal ion, however, its conductivity and electrochemical kinetics still require improvement. This work expands the layer spacing using manganese ion and help to improve conductivity and electrochemical kinetics by graphene. The results demonstrate that the layer spacing can be adjusted from 12.1 Å for pristine vanadium oxide (VOH) to 13.6 Å for manganese vanadium oxide (MnVO). Due to graphene introduction, it decreases to 11.6 Å for manganese vanadium oxide/graphene composite (MnVO-0.05–8/GN-15). Notably, the optimized composite delivers higher specific capacity of 507.5 mAh g<sup>−1</sup> for MnVO-0.05–8/GN-15 than that of MnVO (410.4 mAh g<sup>−1</sup>) and VOH (370.1 mAh g<sup>−1</sup>) at current density of 0.5 A g<sup>−1</sup>. Furthermore, the MnVO-0.05–8/GN-15 exhibits fast Zn<sup>2+</sup> ion diffusion ability, achieving high energy density of 403.51 Wh kg<sup>−1</sup> and retaining an excellent cycle stability of 85.7% after 2000 cycles at a current density of 3 A g<sup>−1</sup>.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100180"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000851/pdfft?md5=71676ba595e9e5e3dbd1e317ba64c35e&pid=1-s2.0-S2949821X24000851-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene-assisted improve electrochemical performance of manganese vanadium oxide for aqueous zinc-ion battery\",\"authors\":\"Xiaowen Niu,&nbsp;Jianhai Chen,&nbsp;Yongtao Tan\",\"doi\":\"10.1016/j.nxener.2024.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layer spacing of vanadium oxide can be effectively expanded by metal ion, however, its conductivity and electrochemical kinetics still require improvement. This work expands the layer spacing using manganese ion and help to improve conductivity and electrochemical kinetics by graphene. The results demonstrate that the layer spacing can be adjusted from 12.1 Å for pristine vanadium oxide (VOH) to 13.6 Å for manganese vanadium oxide (MnVO). Due to graphene introduction, it decreases to 11.6 Å for manganese vanadium oxide/graphene composite (MnVO-0.05–8/GN-15). Notably, the optimized composite delivers higher specific capacity of 507.5 mAh g<sup>−1</sup> for MnVO-0.05–8/GN-15 than that of MnVO (410.4 mAh g<sup>−1</sup>) and VOH (370.1 mAh g<sup>−1</sup>) at current density of 0.5 A g<sup>−1</sup>. Furthermore, the MnVO-0.05–8/GN-15 exhibits fast Zn<sup>2+</sup> ion diffusion ability, achieving high energy density of 403.51 Wh kg<sup>−1</sup> and retaining an excellent cycle stability of 85.7% after 2000 cycles at a current density of 3 A g<sup>−1</sup>.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"5 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000851/pdfft?md5=71676ba595e9e5e3dbd1e317ba64c35e&pid=1-s2.0-S2949821X24000851-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属离子可有效扩大氧化钒的层间距,但其导电性和电化学动力学仍有待改进。本研究利用锰离子扩大了氧化钒的层间距,有助于提高石墨烯的导电性和电化学动力学性能。结果表明,层间距可从原始氧化钒(VOH)的 12.1 Å 调整到氧化锰钒(MnVO)的 13.6 Å。由于石墨烯的引入,氧化锰钒/石墨烯复合材料(MnVO-0.05-8/GN-15)的层间距降至 11.6 埃。值得注意的是,在电流密度为 0.5 A g-1 时,优化复合材料 MnVO-0.05-8/GN-15 的比容量为 507.5 mAh g-1,高于 MnVO(410.4 mAh g-1)和 VOH(370.1 mAh g-1)。此外,MnVO-0.05-8/GN-15 还表现出快速的 Zn2+ 离子扩散能力,实现了 403.51 Wh kg-1 的高能量密度,并在 3 A g-1 的电流密度下循环 2000 次后保持了 85.7% 的优异循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene-assisted improve electrochemical performance of manganese vanadium oxide for aqueous zinc-ion battery

Layer spacing of vanadium oxide can be effectively expanded by metal ion, however, its conductivity and electrochemical kinetics still require improvement. This work expands the layer spacing using manganese ion and help to improve conductivity and electrochemical kinetics by graphene. The results demonstrate that the layer spacing can be adjusted from 12.1 Å for pristine vanadium oxide (VOH) to 13.6 Å for manganese vanadium oxide (MnVO). Due to graphene introduction, it decreases to 11.6 Å for manganese vanadium oxide/graphene composite (MnVO-0.05–8/GN-15). Notably, the optimized composite delivers higher specific capacity of 507.5 mAh g−1 for MnVO-0.05–8/GN-15 than that of MnVO (410.4 mAh g−1) and VOH (370.1 mAh g−1) at current density of 0.5 A g−1. Furthermore, the MnVO-0.05–8/GN-15 exhibits fast Zn2+ ion diffusion ability, achieving high energy density of 403.51 Wh kg−1 and retaining an excellent cycle stability of 85.7% after 2000 cycles at a current density of 3 A g−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信