{"title":"论双射 APN 函数族的最新扩展","authors":"Lukas Kölsch","doi":"10.1016/j.ffa.2024.102494","DOIUrl":null,"url":null,"abstract":"<div><p>APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension, done by Calderini et al. (2023), of a biprojective APN family introduced by Göloğlu (2022) defined on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span>. We show that this generalization yields functions equivalent to Göloğlu's original family if <span><math><mn>3</mn><mo>∤</mo><mi>m</mi></math></span>. If <span><math><mn>3</mn><mo>|</mo><mi>m</mi></math></span> we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by Göloğlu and the author in conjunction with a group action on the set of projective polynomials.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a recent extension of a family of biprojective APN functions\",\"authors\":\"Lukas Kölsch\",\"doi\":\"10.1016/j.ffa.2024.102494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension, done by Calderini et al. (2023), of a biprojective APN family introduced by Göloğlu (2022) defined on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span>. We show that this generalization yields functions equivalent to Göloğlu's original family if <span><math><mn>3</mn><mo>∤</mo><mi>m</mi></math></span>. If <span><math><mn>3</mn><mo>|</mo><mi>m</mi></math></span> we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by Göloğlu and the author in conjunction with a group action on the set of projective polynomials.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001333\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001333","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a recent extension of a family of biprojective APN functions
APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension, done by Calderini et al. (2023), of a biprojective APN family introduced by Göloğlu (2022) defined on . We show that this generalization yields functions equivalent to Göloğlu's original family if . If we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by Göloğlu and the author in conjunction with a group action on the set of projective polynomials.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.