直刀超声波切割铝蜂窝时的细胞壁变形研究

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Jiansong Sun, Yan Qin, Wei Xing, Renke Kang, Zhigang Dong, Yidan Wang
{"title":"直刀超声波切割铝蜂窝时的细胞壁变形研究","authors":"Jiansong Sun,&nbsp;Yan Qin,&nbsp;Wei Xing,&nbsp;Renke Kang,&nbsp;Zhigang Dong,&nbsp;Yidan Wang","doi":"10.1016/j.ultras.2024.107444","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum honeycomb sandwich structure has been widely used in the aeronautic and astronautic fields. As the core part, aluminum honeycomb needs to be machined but defects are easily generated. Ultrasonic cutting is an advanced machining technology for honeycomb materials due to improved machining quality. However, ultrasonic cutting aluminum honeycomb by straight-blade knife is usually accompanied by cell wall deformation, which results in poor machining quality. To facilitate the industrial use of ultrasonic cutting aluminum honeycomb with a straight-blade knife, a finite element (FE) model was developed, and experimental studies had been performed. The effects of the blade-inclined angle and lead angle of the straight-blade knife were studied by analyzing the cutting force, the stress and deformation in the cutting zone. Results showed that the cell wall deformation was significantly suppressed when cutting with a corresponding blade-inclined angle and a lead angle. Meanwhile, effects of ultrasonic cutting parameters on the cell wall deformation were also studied, indicating that a well-machined cell wall could be obtained when cutting with large ultrasonic amplitude.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"144 ","pages":"Article 107444"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on cell wall deformation in ultrasonic cutting aluminum honeycomb by straight-blade knife\",\"authors\":\"Jiansong Sun,&nbsp;Yan Qin,&nbsp;Wei Xing,&nbsp;Renke Kang,&nbsp;Zhigang Dong,&nbsp;Yidan Wang\",\"doi\":\"10.1016/j.ultras.2024.107444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminum honeycomb sandwich structure has been widely used in the aeronautic and astronautic fields. As the core part, aluminum honeycomb needs to be machined but defects are easily generated. Ultrasonic cutting is an advanced machining technology for honeycomb materials due to improved machining quality. However, ultrasonic cutting aluminum honeycomb by straight-blade knife is usually accompanied by cell wall deformation, which results in poor machining quality. To facilitate the industrial use of ultrasonic cutting aluminum honeycomb with a straight-blade knife, a finite element (FE) model was developed, and experimental studies had been performed. The effects of the blade-inclined angle and lead angle of the straight-blade knife were studied by analyzing the cutting force, the stress and deformation in the cutting zone. Results showed that the cell wall deformation was significantly suppressed when cutting with a corresponding blade-inclined angle and a lead angle. Meanwhile, effects of ultrasonic cutting parameters on the cell wall deformation were also studied, indicating that a well-machined cell wall could be obtained when cutting with large ultrasonic amplitude.</p></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"144 \",\"pages\":\"Article 107444\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002075\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002075","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

铝蜂窝夹层结构已广泛应用于航空航天领域。作为核心部件,铝蜂窝需要进行机加工,但容易产生缺陷。超声波切割可提高加工质量,是一种先进的蜂窝材料加工技术。然而,用直刀进行超声波切割铝蜂窝通常会伴随着细胞壁变形,从而导致加工质量低下。为了促进直刀超声波切割铝蜂窝的工业应用,我们建立了一个有限元(FE)模型,并进行了实验研究。通过分析切割力、切割区的应力和变形,研究了直刀的刀片倾斜角和前角的影响。结果表明,采用相应的刀片倾斜角和引导角进行切割时,细胞壁变形明显受到抑制。同时,还研究了超声波切割参数对细胞壁变形的影响,结果表明,用较大的超声波振幅切割时,可获得良好的细胞壁加工效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on cell wall deformation in ultrasonic cutting aluminum honeycomb by straight-blade knife

Aluminum honeycomb sandwich structure has been widely used in the aeronautic and astronautic fields. As the core part, aluminum honeycomb needs to be machined but defects are easily generated. Ultrasonic cutting is an advanced machining technology for honeycomb materials due to improved machining quality. However, ultrasonic cutting aluminum honeycomb by straight-blade knife is usually accompanied by cell wall deformation, which results in poor machining quality. To facilitate the industrial use of ultrasonic cutting aluminum honeycomb with a straight-blade knife, a finite element (FE) model was developed, and experimental studies had been performed. The effects of the blade-inclined angle and lead angle of the straight-blade knife were studied by analyzing the cutting force, the stress and deformation in the cutting zone. Results showed that the cell wall deformation was significantly suppressed when cutting with a corresponding blade-inclined angle and a lead angle. Meanwhile, effects of ultrasonic cutting parameters on the cell wall deformation were also studied, indicating that a well-machined cell wall could be obtained when cutting with large ultrasonic amplitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信