{"title":"地形自动驾驶的车辆建模和状态估计","authors":"Tabish Badar , Juha Backman , Arto Visala","doi":"10.1016/j.conengprac.2024.106046","DOIUrl":null,"url":null,"abstract":"<div><p>The automobile industry usually ignores the height of the path and uses planar vehicle models to implement automatic vehicle control. In addition, existing literature mostly concerns level terrain or homogeneous road surfaces for estimating vehicle dynamics. However, ground vehicles utilized in forestry, such as forwarders, operate on uneven terrain. The vehicle models built on level terrain assumptions are inadequate to capture the rolling or pitching dynamics of such machines as rollover of such vehicles is a potential risk. Therefore, knowledge about the height profile of the path is crucial for automating such off-road operations and avoiding rollover. We propose the use of a six-degrees-of-freedom (6-DOF) dynamic vehicle model to solve the autonomous forwarder problem. An adaptive linear tire model is used in the 6-DOF model assuming the vehicle operates in a primary handling regime. The force models are modified to include the three-dimensional (3D) map information. The calibration procedures, identifying actuator dynamics, and quantifying sensor delays are also represented.</p><p>The proposed vehicle modeling contributed to realizing the continuous-discrete extended Kalman filter (CDEKF), which takes into account the 3D path during filtering and fixed-lag smoothing. Polaris (an all-terrain electric car) is used as a case study to experimentally validate the vehicle modeling and performance of the state estimator. Three types of grounds are selected — an asphalt track, a concrete track with a high elevation gradient, and a gravel track inside a forest. Stable state estimates are obtained using CDEKF and sparse 3D maps of terrains despite discontinuities in satellite navigation data inside the forest. The height estimation results are obtained with sufficient accuracy when compared to ground truth obtained by aerial 3D mapping. Finally, the proposed model’s applicability for predictive control is demonstrated by utilizing the state estimates to predict future states considering (3D) terrain.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0967066124002053/pdfft?md5=f8e1033b864223df5e336f7abd2f49ca&pid=1-s2.0-S0967066124002053-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Vehicle modeling and state estimation for autonomous driving in terrain\",\"authors\":\"Tabish Badar , Juha Backman , Arto Visala\",\"doi\":\"10.1016/j.conengprac.2024.106046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The automobile industry usually ignores the height of the path and uses planar vehicle models to implement automatic vehicle control. In addition, existing literature mostly concerns level terrain or homogeneous road surfaces for estimating vehicle dynamics. However, ground vehicles utilized in forestry, such as forwarders, operate on uneven terrain. The vehicle models built on level terrain assumptions are inadequate to capture the rolling or pitching dynamics of such machines as rollover of such vehicles is a potential risk. Therefore, knowledge about the height profile of the path is crucial for automating such off-road operations and avoiding rollover. We propose the use of a six-degrees-of-freedom (6-DOF) dynamic vehicle model to solve the autonomous forwarder problem. An adaptive linear tire model is used in the 6-DOF model assuming the vehicle operates in a primary handling regime. The force models are modified to include the three-dimensional (3D) map information. The calibration procedures, identifying actuator dynamics, and quantifying sensor delays are also represented.</p><p>The proposed vehicle modeling contributed to realizing the continuous-discrete extended Kalman filter (CDEKF), which takes into account the 3D path during filtering and fixed-lag smoothing. Polaris (an all-terrain electric car) is used as a case study to experimentally validate the vehicle modeling and performance of the state estimator. Three types of grounds are selected — an asphalt track, a concrete track with a high elevation gradient, and a gravel track inside a forest. Stable state estimates are obtained using CDEKF and sparse 3D maps of terrains despite discontinuities in satellite navigation data inside the forest. The height estimation results are obtained with sufficient accuracy when compared to ground truth obtained by aerial 3D mapping. Finally, the proposed model’s applicability for predictive control is demonstrated by utilizing the state estimates to predict future states considering (3D) terrain.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002053/pdfft?md5=f8e1033b864223df5e336f7abd2f49ca&pid=1-s2.0-S0967066124002053-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002053\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002053","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Vehicle modeling and state estimation for autonomous driving in terrain
The automobile industry usually ignores the height of the path and uses planar vehicle models to implement automatic vehicle control. In addition, existing literature mostly concerns level terrain or homogeneous road surfaces for estimating vehicle dynamics. However, ground vehicles utilized in forestry, such as forwarders, operate on uneven terrain. The vehicle models built on level terrain assumptions are inadequate to capture the rolling or pitching dynamics of such machines as rollover of such vehicles is a potential risk. Therefore, knowledge about the height profile of the path is crucial for automating such off-road operations and avoiding rollover. We propose the use of a six-degrees-of-freedom (6-DOF) dynamic vehicle model to solve the autonomous forwarder problem. An adaptive linear tire model is used in the 6-DOF model assuming the vehicle operates in a primary handling regime. The force models are modified to include the three-dimensional (3D) map information. The calibration procedures, identifying actuator dynamics, and quantifying sensor delays are also represented.
The proposed vehicle modeling contributed to realizing the continuous-discrete extended Kalman filter (CDEKF), which takes into account the 3D path during filtering and fixed-lag smoothing. Polaris (an all-terrain electric car) is used as a case study to experimentally validate the vehicle modeling and performance of the state estimator. Three types of grounds are selected — an asphalt track, a concrete track with a high elevation gradient, and a gravel track inside a forest. Stable state estimates are obtained using CDEKF and sparse 3D maps of terrains despite discontinuities in satellite navigation data inside the forest. The height estimation results are obtained with sufficient accuracy when compared to ground truth obtained by aerial 3D mapping. Finally, the proposed model’s applicability for predictive control is demonstrated by utilizing the state estimates to predict future states considering (3D) terrain.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.