卡恩-萨克斯不等式的极值

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ramon van Handel , Alan Yan , Xinmeng Zeng
{"title":"卡恩-萨克斯不等式的极值","authors":"Ramon van Handel ,&nbsp;Alan Yan ,&nbsp;Xinmeng Zeng","doi":"10.1016/j.aim.2024.109892","DOIUrl":null,"url":null,"abstract":"<div><p>A classical result of Kahn and Saks states that given any partially ordered set with two distinguished elements, the number of linear extensions in which the ranks of the distinguished elements differ by <em>k</em> is log-concave as a function of <em>k</em>. The log-concave sequences that can arise in this manner prove to exhibit a much richer structure, however, than is evident from log-concavity alone. The main result of this paper is a complete characterization of the extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial understanding of where and what kind of geometric progressions can appear in these log-concave sequences. This settles a partial conjecture of Chan-Pak-Panova, while the analysis uncovers new extremals that were not previously conjectured. The proof relies on a much more general geometric mechanism—a hard Lefschetz theorem for nef classes that was obtained in the setting of convex polytopes by Shenfeld and Van Handel—which forms a model for the investigation of such structures in other combinatorial problems.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The extremals of the Kahn-Saks inequality\",\"authors\":\"Ramon van Handel ,&nbsp;Alan Yan ,&nbsp;Xinmeng Zeng\",\"doi\":\"10.1016/j.aim.2024.109892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A classical result of Kahn and Saks states that given any partially ordered set with two distinguished elements, the number of linear extensions in which the ranks of the distinguished elements differ by <em>k</em> is log-concave as a function of <em>k</em>. The log-concave sequences that can arise in this manner prove to exhibit a much richer structure, however, than is evident from log-concavity alone. The main result of this paper is a complete characterization of the extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial understanding of where and what kind of geometric progressions can appear in these log-concave sequences. This settles a partial conjecture of Chan-Pak-Panova, while the analysis uncovers new extremals that were not previously conjectured. The proof relies on a much more general geometric mechanism—a hard Lefschetz theorem for nef classes that was obtained in the setting of convex polytopes by Shenfeld and Van Handel—which forms a model for the investigation of such structures in other combinatorial problems.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004079\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卡恩和萨克斯的一个经典结果指出,给定任何具有两个区分元素的部分有序集合,区分元素的秩相差 k 的线性扩展的数目是 k 的对数凹函数。本文的主要成果是对卡恩-萨克斯不等式极值的完整表征:我们对这些对数凹序列中可能出现的几何级数的位置和类型有了详细的组合理解。这解决了 Chan-Pak-Panova 的部分猜想,同时分析发现了以前没有猜想过的新极值。该证明依赖于一种更为普遍的几何机制--申菲尔德和范-汉德尔在凸多胞形中获得的nef类的硬Lefschetz定理--它为研究其他组合问题中的此类结构提供了模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The extremals of the Kahn-Saks inequality

A classical result of Kahn and Saks states that given any partially ordered set with two distinguished elements, the number of linear extensions in which the ranks of the distinguished elements differ by k is log-concave as a function of k. The log-concave sequences that can arise in this manner prove to exhibit a much richer structure, however, than is evident from log-concavity alone. The main result of this paper is a complete characterization of the extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial understanding of where and what kind of geometric progressions can appear in these log-concave sequences. This settles a partial conjecture of Chan-Pak-Panova, while the analysis uncovers new extremals that were not previously conjectured. The proof relies on a much more general geometric mechanism—a hard Lefschetz theorem for nef classes that was obtained in the setting of convex polytopes by Shenfeld and Van Handel—which forms a model for the investigation of such structures in other combinatorial problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信