通过扩展器利用稀疏伯努利矩阵进行稳健的稀疏恢复

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Pedro Abdalla
{"title":"通过扩展器利用稀疏伯努利矩阵进行稳健的稀疏恢复","authors":"Pedro Abdalla","doi":"10.1016/j.acha.2024.101697","DOIUrl":null,"url":null,"abstract":"<div><p>Sparse binary matrices are of great interest in the field of sparse recovery, nonnegative compressed sensing, statistics in networks, and theoretical computer science. This class of matrices makes it possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, Bernoulli (<em>p</em>) matrices formed by independent identically distributed (i.i.d.) Bernoulli (<em>p</em>) random variables are of practical relevance in the context of noise-blind recovery in nonnegative compressed sensing.</p><p>In this work, we investigate the robust nullspace property of Bernoulli (<em>p</em>) matrices. Previous results in the literature establish that such matrices can accurately recover <em>n</em>-dimensional <em>s</em>-sparse vectors with <span><math><mi>m</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mfrac><mi>log</mi><mo>⁡</mo><mfrac><mrow><mi>e</mi><mi>n</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></mrow></math></span> measurements, where <span><math><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>≤</mo><mi>p</mi></math></span> is a constant dependent only on the parameter <em>p</em>. These results suggest that in the sparse regime, as <em>p</em> approaches zero, the (sparse) Bernoulli (<em>p</em>) matrix requires significantly more measurements than the minimal necessary, as achieved by standard isotropic subgaussian designs. However, we show that this is not the case.</p><p>Our main result characterizes, for a wide range of sparsity levels <em>s</em>, the smallest <em>p</em> for which sparse recovery can be achieved with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results and explore connections with the theory of invertibility of discrete random matrices and integer compressed sensing.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101697"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000745/pdfft?md5=da55acefd115269f8b0ce4f5a4a72295&pid=1-s2.0-S1063520324000745-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust sparse recovery with sparse Bernoulli matrices via expanders\",\"authors\":\"Pedro Abdalla\",\"doi\":\"10.1016/j.acha.2024.101697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sparse binary matrices are of great interest in the field of sparse recovery, nonnegative compressed sensing, statistics in networks, and theoretical computer science. This class of matrices makes it possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, Bernoulli (<em>p</em>) matrices formed by independent identically distributed (i.i.d.) Bernoulli (<em>p</em>) random variables are of practical relevance in the context of noise-blind recovery in nonnegative compressed sensing.</p><p>In this work, we investigate the robust nullspace property of Bernoulli (<em>p</em>) matrices. Previous results in the literature establish that such matrices can accurately recover <em>n</em>-dimensional <em>s</em>-sparse vectors with <span><math><mi>m</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mfrac><mi>log</mi><mo>⁡</mo><mfrac><mrow><mi>e</mi><mi>n</mi></mrow><mrow><mi>s</mi></mrow></mfrac><mo>)</mo></mrow></math></span> measurements, where <span><math><mi>c</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>≤</mo><mi>p</mi></math></span> is a constant dependent only on the parameter <em>p</em>. These results suggest that in the sparse regime, as <em>p</em> approaches zero, the (sparse) Bernoulli (<em>p</em>) matrix requires significantly more measurements than the minimal necessary, as achieved by standard isotropic subgaussian designs. However, we show that this is not the case.</p><p>Our main result characterizes, for a wide range of sparsity levels <em>s</em>, the smallest <em>p</em> for which sparse recovery can be achieved with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results and explore connections with the theory of invertibility of discrete random matrices and integer compressed sensing.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101697\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000745/pdfft?md5=da55acefd115269f8b0ce4f5a4a72295&pid=1-s2.0-S1063520324000745-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000745\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

稀疏二进制矩阵在稀疏恢复、非负压缩传感、网络统计和理论计算机科学领域具有重要意义。这类矩阵能以更低的存储成本和更快的解码算法进行信号恢复。特别是,由独立同分布(i.i.d. Bernoulli (p))随机变量形成的 Bernoulli (p) 矩阵在非负压缩传感的噪声盲恢复中具有实际意义。这些结果表明,在稀疏状态下,当 p 接近零时,(稀疏)伯努利(p)矩阵所需的测量次数明显多于标准各向同性亚高斯设计所需的最小值。我们的主要结果描述了在广泛的稀疏度 s 范围内,用最少的测量次数就能实现稀疏恢复的最小 p。我们还提供了相匹配的下限,以确定我们结果的最优性,并探讨了与离散随机矩阵可逆性理论和整数压缩传感之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust sparse recovery with sparse Bernoulli matrices via expanders

Sparse binary matrices are of great interest in the field of sparse recovery, nonnegative compressed sensing, statistics in networks, and theoretical computer science. This class of matrices makes it possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, Bernoulli (p) matrices formed by independent identically distributed (i.i.d.) Bernoulli (p) random variables are of practical relevance in the context of noise-blind recovery in nonnegative compressed sensing.

In this work, we investigate the robust nullspace property of Bernoulli (p) matrices. Previous results in the literature establish that such matrices can accurately recover n-dimensional s-sparse vectors with m=O(sc(p)logens) measurements, where c(p)p is a constant dependent only on the parameter p. These results suggest that in the sparse regime, as p approaches zero, the (sparse) Bernoulli (p) matrix requires significantly more measurements than the minimal necessary, as achieved by standard isotropic subgaussian designs. However, we show that this is not the case.

Our main result characterizes, for a wide range of sparsity levels s, the smallest p for which sparse recovery can be achieved with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results and explore connections with the theory of invertibility of discrete random matrices and integer compressed sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信