{"title":"libepa - 用于计算超外围碰撞截面的 C++/Python 库","authors":"E.V. Zhemchugov , S.I. Godunov , E.K. Karkaryan , V.A. Novikov , A.N. Rozanov , M.I. Vysotsky","doi":"10.1016/j.cpc.2024.109347","DOIUrl":null,"url":null,"abstract":"<div><p>The library provides a set of C++/Python functions for computing cross sections of ultraperipheral collisions of high energy particles under the equivalent photons approximation. Cross sections are represented through multiple integrals over the phase space. The integrals are calculated through recurrent application of algorithms for one dimensional integration. The paper contains an introduction to the theory of ultraperipheral collisions, discusses the library approach and provides a few examples of calculations.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"305 ","pages":"Article 109347"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"libepa — A C++/Python library for calculations of cross sections of ultraperipheral collisions\",\"authors\":\"E.V. Zhemchugov , S.I. Godunov , E.K. Karkaryan , V.A. Novikov , A.N. Rozanov , M.I. Vysotsky\",\"doi\":\"10.1016/j.cpc.2024.109347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The library provides a set of C++/Python functions for computing cross sections of ultraperipheral collisions of high energy particles under the equivalent photons approximation. Cross sections are represented through multiple integrals over the phase space. The integrals are calculated through recurrent application of algorithms for one dimensional integration. The paper contains an introduction to the theory of ultraperipheral collisions, discusses the library approach and provides a few examples of calculations.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"305 \",\"pages\":\"Article 109347\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002704\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002704","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
libepa — A C++/Python library for calculations of cross sections of ultraperipheral collisions
The library provides a set of C++/Python functions for computing cross sections of ultraperipheral collisions of high energy particles under the equivalent photons approximation. Cross sections are represented through multiple integrals over the phase space. The integrals are calculated through recurrent application of algorithms for one dimensional integration. The paper contains an introduction to the theory of ultraperipheral collisions, discusses the library approach and provides a few examples of calculations.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.